Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167761375> ?p ?o ?g. }
- W2167761375 abstract "Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. This study shows that if prediction accuracy is the objective, the GA-based approach lead to better results respect to the SFS approach, independently of the classifier used. Regarding classifiers, even if C-MANTEC did not achieve the best overall results, the performance was competitive with a very robust behaviour in terms of the parameters of the algorithm, and thus it can be considered as a candidate technique for future studies." @default.
- W2167761375 created "2016-06-24" @default.
- W2167761375 creator A5009946045 @default.
- W2167761375 creator A5037345774 @default.
- W2167761375 creator A5053326943 @default.
- W2167761375 creator A5087244161 @default.
- W2167761375 creator A5090072367 @default.
- W2167761375 date "2014-05-01" @default.
- W2167761375 modified "2023-10-01" @default.
- W2167761375 title "Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data" @default.
- W2167761375 cites W1575982426 @default.
- W2167761375 cites W1988319444 @default.
- W2167761375 cites W2004797953 @default.
- W2167761375 cites W2005222981 @default.
- W2167761375 cites W2025831660 @default.
- W2167761375 cites W2030901812 @default.
- W2167761375 cites W2034338161 @default.
- W2167761375 cites W2046624437 @default.
- W2167761375 cites W2048263097 @default.
- W2167761375 cites W2060074791 @default.
- W2167761375 cites W2062989416 @default.
- W2167761375 cites W2066892321 @default.
- W2167761375 cites W2072931590 @default.
- W2167761375 cites W2073849130 @default.
- W2167761375 cites W2077098300 @default.
- W2167761375 cites W2083467923 @default.
- W2167761375 cites W2087433137 @default.
- W2167761375 cites W2105981176 @default.
- W2167761375 cites W2107969104 @default.
- W2167761375 cites W2109363337 @default.
- W2167761375 cites W2119387367 @default.
- W2167761375 cites W2126647821 @default.
- W2167761375 cites W2133000300 @default.
- W2167761375 cites W2135190479 @default.
- W2167761375 cites W2147504239 @default.
- W2167761375 cites W2147524202 @default.
- W2167761375 cites W2151309040 @default.
- W2167761375 cites W2152012752 @default.
- W2167761375 cites W2152191644 @default.
- W2167761375 cites W2154053567 @default.
- W2167761375 cites W2158086655 @default.
- W2167761375 cites W2159533632 @default.
- W2167761375 cites W2165466912 @default.
- W2167761375 cites W2290797662 @default.
- W2167761375 cites W2503135644 @default.
- W2167761375 cites W3141069546 @default.
- W2167761375 cites W4241801284 @default.
- W2167761375 cites W50145612 @default.
- W2167761375 doi "https://doi.org/10.1186/1742-4682-11-s1-s7" @default.
- W2167761375 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4108856" @default.
- W2167761375 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25077572" @default.
- W2167761375 hasPublicationYear "2014" @default.
- W2167761375 type Work @default.
- W2167761375 sameAs 2167761375 @default.
- W2167761375 citedByCount "23" @default.
- W2167761375 countsByYear W21677613752014 @default.
- W2167761375 countsByYear W21677613752015 @default.
- W2167761375 countsByYear W21677613752016 @default.
- W2167761375 countsByYear W21677613752017 @default.
- W2167761375 countsByYear W21677613752018 @default.
- W2167761375 countsByYear W21677613752019 @default.
- W2167761375 countsByYear W21677613752020 @default.
- W2167761375 countsByYear W21677613752021 @default.
- W2167761375 countsByYear W21677613752023 @default.
- W2167761375 crossrefType "journal-article" @default.
- W2167761375 hasAuthorship W2167761375A5009946045 @default.
- W2167761375 hasAuthorship W2167761375A5037345774 @default.
- W2167761375 hasAuthorship W2167761375A5053326943 @default.
- W2167761375 hasAuthorship W2167761375A5087244161 @default.
- W2167761375 hasAuthorship W2167761375A5090072367 @default.
- W2167761375 hasBestOaLocation W21677613751 @default.
- W2167761375 hasConcept C104317684 @default.
- W2167761375 hasConcept C119857082 @default.
- W2167761375 hasConcept C12267149 @default.
- W2167761375 hasConcept C124101348 @default.
- W2167761375 hasConcept C148483581 @default.
- W2167761375 hasConcept C150194340 @default.
- W2167761375 hasConcept C153180895 @default.
- W2167761375 hasConcept C154945302 @default.
- W2167761375 hasConcept C177264268 @default.
- W2167761375 hasConcept C179717631 @default.
- W2167761375 hasConcept C199360897 @default.
- W2167761375 hasConcept C41008148 @default.
- W2167761375 hasConcept C50644808 @default.
- W2167761375 hasConcept C52001869 @default.
- W2167761375 hasConcept C55493867 @default.
- W2167761375 hasConcept C58489278 @default.
- W2167761375 hasConcept C60908668 @default.
- W2167761375 hasConcept C69738355 @default.
- W2167761375 hasConcept C81917197 @default.
- W2167761375 hasConcept C8415881 @default.
- W2167761375 hasConcept C86803240 @default.
- W2167761375 hasConceptScore W2167761375C104317684 @default.
- W2167761375 hasConceptScore W2167761375C119857082 @default.
- W2167761375 hasConceptScore W2167761375C12267149 @default.
- W2167761375 hasConceptScore W2167761375C124101348 @default.
- W2167761375 hasConceptScore W2167761375C148483581 @default.
- W2167761375 hasConceptScore W2167761375C150194340 @default.
- W2167761375 hasConceptScore W2167761375C153180895 @default.
- W2167761375 hasConceptScore W2167761375C154945302 @default.