Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167831266> ?p ?o ?g. }
- W2167831266 abstract "Systems of polynomial equations over an algebraically-closed field K can be used to concisely represent combinatorial decision problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colorable, Hamiltonian, etc.) if and only if a related system of polynomial equations has a solution over K . If the system of polynomial equations has no solution, then Hilbert's Nullstellensatz yields a certificate that the underlying combinatorial problem is infeasible. We investigate an algorithm aimed at proving combinatorial infeasibility based on the experimentally-observed low degree of Hilbert's Nullstellensatz and large-scale, sparse linear algebra computations over K . We explore the Nullstellensatz Linear Algebra algorithm (Nul LA) from both a computational and a theoretical perspective. From the computational perspective, we compare computations over the rationals to computations over finite fields; we discuss mathematical ideas for optimizing Nul LA ranging from the algebraic to the probabilistic, and we report on experiments proving the non-3-colorability of graphs with almost two thousand vertices and tens of thousands of edges. From a theoretical perspective, we observe that if an NP-complete problem (e.g. graph 3-colorability) is represented as a system of polynomial equations, the resulting infeasibility certificate is a coNP certificate. Thus, if P ≠ NP and NP ≠ coNP, there must exist an infinite family of instances (e.g. an infinite family of graphs) where the minimum-degree of the associated Nullstellensatz certificate grows linearly in the input size and the certificates contain a super-polynomial number of monomials. In the case of graph 3-colorability, we show that the minimum-degree of a Nullstellensatz certificate (associated with a particular encoding) follows the sequence 1,4,7,..., etc.. In the case of the independent set decision problem, we show that a minimum-degree Nullstellensatz certificate (associated with a particular encoding) proving the non-existence of an independent set of size k is equal to the size of the largest independent set in the graph. Moreover, such a Nullstellensatz certificate contains one monomial for each independent set in the graph." @default.
- W2167831266 created "2016-06-24" @default.
- W2167831266 creator A5005906505 @default.
- W2167831266 date "2008-01-01" @default.
- W2167831266 modified "2023-09-26" @default.
- W2167831266 title "Computer algebra, combinatorics, and complexity: hilbert's nullstellensatz and np-complete problems" @default.
- W2167831266 cites W134868435 @default.
- W2167831266 cites W1483218536 @default.
- W2167831266 cites W1490896784 @default.
- W2167831266 cites W1493026726 @default.
- W2167831266 cites W1505369303 @default.
- W2167831266 cites W1520007244 @default.
- W2167831266 cites W1562183207 @default.
- W2167831266 cites W1578642373 @default.
- W2167831266 cites W1620410031 @default.
- W2167831266 cites W1698110770 @default.
- W2167831266 cites W194598513 @default.
- W2167831266 cites W1963547452 @default.
- W2167831266 cites W1967184028 @default.
- W2167831266 cites W1977187614 @default.
- W2167831266 cites W1977561651 @default.
- W2167831266 cites W1986979529 @default.
- W2167831266 cites W1987569957 @default.
- W2167831266 cites W1992202796 @default.
- W2167831266 cites W1994584977 @default.
- W2167831266 cites W2000872069 @default.
- W2167831266 cites W2004160044 @default.
- W2167831266 cites W2011039300 @default.
- W2167831266 cites W2013504313 @default.
- W2167831266 cites W2015587012 @default.
- W2167831266 cites W2020513176 @default.
- W2167831266 cites W2029679523 @default.
- W2167831266 cites W2037615924 @default.
- W2167831266 cites W2045652876 @default.
- W2167831266 cites W2052435807 @default.
- W2167831266 cites W2061987651 @default.
- W2167831266 cites W2064238886 @default.
- W2167831266 cites W2069288321 @default.
- W2167831266 cites W2072414205 @default.
- W2167831266 cites W2076864943 @default.
- W2167831266 cites W2083176195 @default.
- W2167831266 cites W2092520161 @default.
- W2167831266 cites W2102669784 @default.
- W2167831266 cites W2153918277 @default.
- W2167831266 cites W2156811188 @default.
- W2167831266 cites W2161779091 @default.
- W2167831266 cites W2167036627 @default.
- W2167831266 cites W2295428206 @default.
- W2167831266 cites W2319466955 @default.
- W2167831266 cites W2573816347 @default.
- W2167831266 cites W2799004609 @default.
- W2167831266 cites W2911280162 @default.
- W2167831266 cites W2950227315 @default.
- W2167831266 cites W321192608 @default.
- W2167831266 cites W2891212941 @default.
- W2167831266 cites W3090330333 @default.
- W2167831266 hasPublicationYear "2008" @default.
- W2167831266 type Work @default.
- W2167831266 sameAs 2167831266 @default.
- W2167831266 citedByCount "11" @default.
- W2167831266 countsByYear W21678312662012 @default.
- W2167831266 countsByYear W21678312662013 @default.
- W2167831266 countsByYear W21678312662014 @default.
- W2167831266 countsByYear W21678312662017 @default.
- W2167831266 crossrefType "journal-article" @default.
- W2167831266 hasAuthorship W2167831266A5005906505 @default.
- W2167831266 hasConcept C105335568 @default.
- W2167831266 hasConcept C11252640 @default.
- W2167831266 hasConcept C11413529 @default.
- W2167831266 hasConcept C114614502 @default.
- W2167831266 hasConcept C118615104 @default.
- W2167831266 hasConcept C134306372 @default.
- W2167831266 hasConcept C33923547 @default.
- W2167831266 hasConcept C90119067 @default.
- W2167831266 hasConcept C96865113 @default.
- W2167831266 hasConceptScore W2167831266C105335568 @default.
- W2167831266 hasConceptScore W2167831266C11252640 @default.
- W2167831266 hasConceptScore W2167831266C11413529 @default.
- W2167831266 hasConceptScore W2167831266C114614502 @default.
- W2167831266 hasConceptScore W2167831266C118615104 @default.
- W2167831266 hasConceptScore W2167831266C134306372 @default.
- W2167831266 hasConceptScore W2167831266C33923547 @default.
- W2167831266 hasConceptScore W2167831266C90119067 @default.
- W2167831266 hasConceptScore W2167831266C96865113 @default.
- W2167831266 hasLocation W21678312661 @default.
- W2167831266 hasOpenAccess W2167831266 @default.
- W2167831266 hasPrimaryLocation W21678312661 @default.
- W2167831266 hasRelatedWork W134868435 @default.
- W2167831266 hasRelatedWork W1490896784 @default.
- W2167831266 hasRelatedWork W1505369303 @default.
- W2167831266 hasRelatedWork W1698110770 @default.
- W2167831266 hasRelatedWork W1967184028 @default.
- W2167831266 hasRelatedWork W1976596704 @default.
- W2167831266 hasRelatedWork W1977561651 @default.
- W2167831266 hasRelatedWork W1990618633 @default.
- W2167831266 hasRelatedWork W1992202796 @default.
- W2167831266 hasRelatedWork W2004160044 @default.
- W2167831266 hasRelatedWork W2011039300 @default.
- W2167831266 hasRelatedWork W2037615924 @default.
- W2167831266 hasRelatedWork W2038079294 @default.