Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167881994> ?p ?o ?g. }
- W2167881994 endingPage "1843" @default.
- W2167881994 startingPage "1832" @default.
- W2167881994 abstract "This paper evaluates state-of-the-art parametric and nonparametric approaches for the estimation of leaf chlorophyll content <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$(Chl)$</tex></formula> , leaf area index, and fractional vegetation cover from space. The parametric approach involves comparison of established and generic narrowband vegetation indices (VIs) and the Normalized Area Over reflectance Curve method, which calculates the continuum spectral region sensitive to <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$Chl$</tex></formula> . However, as not all available bands take part in these spectral algorithms, it remains unclear whether optimal estimations are achieved. Alternatively, the nonparametric approach is based on Gaussian process (GP) techniques and allows inclusion of all bands. GP builds a nonlinear regression as a linear combination of spectra mapped to a high-dimensional space. Moreover, GP provides an indication of the most contributing bands for each parameter, a weight for the most relevant spectra contained in the training data set, and a confidence estimate of the retrieval. GP has previously demonstrated to be competitive in accuracy with support vector regression and neural networks. Results from hyperspectral Compact High Resolution Imaging Spectrometer data over the Spanish Barrax test site show that GP outperformed the VIs in assessing the vegetation properties when using at least four out of the 62 bands. GP identified most contributing bands in the red and red edge and, to a lower extent, in the blue and NIR parts of the spectrum. Since the proposed GP method is able to build robust relationships between the parameter of interest and only a few bands, it is a promising approach for multispectral data as well." @default.
- W2167881994 created "2016-06-24" @default.
- W2167881994 creator A5003044369 @default.
- W2167881994 creator A5008075763 @default.
- W2167881994 creator A5008454143 @default.
- W2167881994 creator A5039052506 @default.
- W2167881994 creator A5079448372 @default.
- W2167881994 date "2012-05-01" @default.
- W2167881994 modified "2023-10-16" @default.
- W2167881994 title "Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques" @default.
- W2167881994 cites W116253160 @default.
- W2167881994 cites W1498265525 @default.
- W2167881994 cites W1567512734 @default.
- W2167881994 cites W1648445109 @default.
- W2167881994 cites W1971070487 @default.
- W2167881994 cites W1972226951 @default.
- W2167881994 cites W1974416151 @default.
- W2167881994 cites W1976426738 @default.
- W2167881994 cites W1978223575 @default.
- W2167881994 cites W1985555755 @default.
- W2167881994 cites W1988269748 @default.
- W2167881994 cites W2000485836 @default.
- W2167881994 cites W2002495580 @default.
- W2167881994 cites W2008283621 @default.
- W2167881994 cites W2011475440 @default.
- W2167881994 cites W2012686349 @default.
- W2167881994 cites W2025757188 @default.
- W2167881994 cites W2025967407 @default.
- W2167881994 cites W2030334626 @default.
- W2167881994 cites W2036003376 @default.
- W2167881994 cites W2045331152 @default.
- W2167881994 cites W2056352756 @default.
- W2167881994 cites W2063623478 @default.
- W2167881994 cites W2071190035 @default.
- W2167881994 cites W2073555669 @default.
- W2167881994 cites W2078996926 @default.
- W2167881994 cites W2089441588 @default.
- W2167881994 cites W2091493105 @default.
- W2167881994 cites W2095681882 @default.
- W2167881994 cites W2098320370 @default.
- W2167881994 cites W2099505124 @default.
- W2167881994 cites W2111947859 @default.
- W2167881994 cites W2112590417 @default.
- W2167881994 cites W2118162171 @default.
- W2167881994 cites W2118791227 @default.
- W2167881994 cites W2123909695 @default.
- W2167881994 cites W2128199995 @default.
- W2167881994 cites W2128438912 @default.
- W2167881994 cites W2129483042 @default.
- W2167881994 cites W2132147719 @default.
- W2167881994 cites W2133125644 @default.
- W2167881994 cites W2133506218 @default.
- W2167881994 cites W2139211176 @default.
- W2167881994 cites W2145539952 @default.
- W2167881994 cites W2145669224 @default.
- W2167881994 cites W2146060412 @default.
- W2167881994 cites W2151431491 @default.
- W2167881994 cites W2151659169 @default.
- W2167881994 cites W2156418736 @default.
- W2167881994 cites W2157760685 @default.
- W2167881994 cites W2158755893 @default.
- W2167881994 cites W2161815745 @default.
- W2167881994 cites W2163410149 @default.
- W2167881994 cites W2168180549 @default.
- W2167881994 cites W2248139498 @default.
- W2167881994 cites W4249940406 @default.
- W2167881994 doi "https://doi.org/10.1109/tgrs.2011.2168962" @default.
- W2167881994 hasPublicationYear "2012" @default.
- W2167881994 type Work @default.
- W2167881994 sameAs 2167881994 @default.
- W2167881994 citedByCount "191" @default.
- W2167881994 countsByYear W21678819942012 @default.
- W2167881994 countsByYear W21678819942013 @default.
- W2167881994 countsByYear W21678819942014 @default.
- W2167881994 countsByYear W21678819942015 @default.
- W2167881994 countsByYear W21678819942016 @default.
- W2167881994 countsByYear W21678819942017 @default.
- W2167881994 countsByYear W21678819942018 @default.
- W2167881994 countsByYear W21678819942019 @default.
- W2167881994 countsByYear W21678819942020 @default.
- W2167881994 countsByYear W21678819942021 @default.
- W2167881994 countsByYear W21678819942022 @default.
- W2167881994 countsByYear W21678819942023 @default.
- W2167881994 crossrefType "journal-article" @default.
- W2167881994 hasAuthorship W2167881994A5003044369 @default.
- W2167881994 hasAuthorship W2167881994A5008075763 @default.
- W2167881994 hasAuthorship W2167881994A5008454143 @default.
- W2167881994 hasAuthorship W2167881994A5039052506 @default.
- W2167881994 hasAuthorship W2167881994A5079448372 @default.
- W2167881994 hasConcept C102366305 @default.
- W2167881994 hasConcept C105795698 @default.
- W2167881994 hasConcept C11413529 @default.
- W2167881994 hasConcept C114700698 @default.
- W2167881994 hasConcept C117251300 @default.
- W2167881994 hasConcept C121332964 @default.
- W2167881994 hasConcept C142724271 @default.
- W2167881994 hasConcept C153180895 @default.
- W2167881994 hasConcept C154945302 @default.