Matches in SemOpenAlex for { <https://semopenalex.org/work/W2168374414> ?p ?o ?g. }
- W2168374414 endingPage "119" @default.
- W2168374414 startingPage "100" @default.
- W2168374414 abstract "Because of heterogeneity across regions, economic policy measures are increasingly targeted at the regional level and, therefore, require regional forecasts. The data available to compute regional forecasts are usually a pseudo panel of a limited number of observations over time and a large number of regions strongly interacting with each other. Traditional time-series techniques applied to distinct time series of regional data are probably a suboptimal forecasting strategy. Although both linear and nonlinear models have been applied and evaluated to forecast socioeconomic variables, spatial interactions among regions are often ignored. This article evaluates the ability of spatial error and spatial lag models to correct for misspecifications due to neglected spatial autocorrelation in the data. The empirical application on short-term forecasts of employment in 326 West German regions shows that the superimposed spatial structure that is required for the estimation of spatial models improves the forecasting performance of nonspatial models." @default.
- W2168374414 created "2016-06-24" @default.
- W2168374414 creator A5009404760 @default.
- W2168374414 creator A5059101335 @default.
- W2168374414 date "2007-04-01" @default.
- W2168374414 modified "2023-10-17" @default.
- W2168374414 title "Forecasting Regional Labor Market Developments under Spatial Autocorrelation" @default.
- W2168374414 cites W1970518420 @default.
- W2168374414 cites W2017001089 @default.
- W2168374414 cites W2028226037 @default.
- W2168374414 cites W2038601479 @default.
- W2168374414 cites W2040989045 @default.
- W2168374414 cites W2049668183 @default.
- W2168374414 cites W2056720463 @default.
- W2168374414 cites W2084848801 @default.
- W2168374414 cites W2089387865 @default.
- W2168374414 cites W2093947671 @default.
- W2168374414 cites W2098212684 @default.
- W2168374414 cites W2111616256 @default.
- W2168374414 cites W2231698955 @default.
- W2168374414 cites W2479198954 @default.
- W2168374414 cites W2484025766 @default.
- W2168374414 cites W3022862395 @default.
- W2168374414 cites W3123409593 @default.
- W2168374414 cites W3125556939 @default.
- W2168374414 cites W4205913752 @default.
- W2168374414 cites W4233094751 @default.
- W2168374414 cites W4234633137 @default.
- W2168374414 cites W4236066262 @default.
- W2168374414 cites W4236667203 @default.
- W2168374414 cites W4237954859 @default.
- W2168374414 cites W4256053265 @default.
- W2168374414 cites W4310735325 @default.
- W2168374414 cites W48712815 @default.
- W2168374414 doi "https://doi.org/10.1177/0160017606298428" @default.
- W2168374414 hasPublicationYear "2007" @default.
- W2168374414 type Work @default.
- W2168374414 sameAs 2168374414 @default.
- W2168374414 citedByCount "48" @default.
- W2168374414 countsByYear W21683744142012 @default.
- W2168374414 countsByYear W21683744142013 @default.
- W2168374414 countsByYear W21683744142014 @default.
- W2168374414 countsByYear W21683744142015 @default.
- W2168374414 countsByYear W21683744142016 @default.
- W2168374414 countsByYear W21683744142017 @default.
- W2168374414 countsByYear W21683744142018 @default.
- W2168374414 countsByYear W21683744142019 @default.
- W2168374414 countsByYear W21683744142020 @default.
- W2168374414 countsByYear W21683744142023 @default.
- W2168374414 crossrefType "journal-article" @default.
- W2168374414 hasAuthorship W2168374414A5009404760 @default.
- W2168374414 hasAuthorship W2168374414A5059101335 @default.
- W2168374414 hasConcept C105795698 @default.
- W2168374414 hasConcept C121332964 @default.
- W2168374414 hasConcept C138695830 @default.
- W2168374414 hasConcept C143724316 @default.
- W2168374414 hasConcept C149782125 @default.
- W2168374414 hasConcept C151406439 @default.
- W2168374414 hasConcept C151730666 @default.
- W2168374414 hasConcept C159620131 @default.
- W2168374414 hasConcept C162324750 @default.
- W2168374414 hasConcept C187736073 @default.
- W2168374414 hasConcept C31258907 @default.
- W2168374414 hasConcept C33923547 @default.
- W2168374414 hasConcept C41008148 @default.
- W2168374414 hasConcept C5297727 @default.
- W2168374414 hasConcept C61797465 @default.
- W2168374414 hasConcept C62520636 @default.
- W2168374414 hasConcept C6422946 @default.
- W2168374414 hasConcept C75778745 @default.
- W2168374414 hasConcept C86803240 @default.
- W2168374414 hasConcept C96250715 @default.
- W2168374414 hasConcept C97144632 @default.
- W2168374414 hasConceptScore W2168374414C105795698 @default.
- W2168374414 hasConceptScore W2168374414C121332964 @default.
- W2168374414 hasConceptScore W2168374414C138695830 @default.
- W2168374414 hasConceptScore W2168374414C143724316 @default.
- W2168374414 hasConceptScore W2168374414C149782125 @default.
- W2168374414 hasConceptScore W2168374414C151406439 @default.
- W2168374414 hasConceptScore W2168374414C151730666 @default.
- W2168374414 hasConceptScore W2168374414C159620131 @default.
- W2168374414 hasConceptScore W2168374414C162324750 @default.
- W2168374414 hasConceptScore W2168374414C187736073 @default.
- W2168374414 hasConceptScore W2168374414C31258907 @default.
- W2168374414 hasConceptScore W2168374414C33923547 @default.
- W2168374414 hasConceptScore W2168374414C41008148 @default.
- W2168374414 hasConceptScore W2168374414C5297727 @default.
- W2168374414 hasConceptScore W2168374414C61797465 @default.
- W2168374414 hasConceptScore W2168374414C62520636 @default.
- W2168374414 hasConceptScore W2168374414C6422946 @default.
- W2168374414 hasConceptScore W2168374414C75778745 @default.
- W2168374414 hasConceptScore W2168374414C86803240 @default.
- W2168374414 hasConceptScore W2168374414C96250715 @default.
- W2168374414 hasConceptScore W2168374414C97144632 @default.
- W2168374414 hasIssue "2" @default.
- W2168374414 hasLocation W21683744141 @default.
- W2168374414 hasLocation W21683744142 @default.
- W2168374414 hasOpenAccess W2168374414 @default.