Matches in SemOpenAlex for { <https://semopenalex.org/work/W2168448560> ?p ?o ?g. }
- W2168448560 endingPage "470" @default.
- W2168448560 startingPage "448" @default.
- W2168448560 abstract "Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, which must be evaluated separately because of the need to compute a maximum between them. A generalized Monte Carlo sampling algorithm uses nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an inner loop to sample remaining uncertain parameters. Alternative computation methods and shortcut algorithms are discussed and mathematical conditions for their use considered. Maxima of Monte Carlo estimates of expectations are biased upward, and the authors show that the use of small samples results in biased EVPI estimates. Three case studies illustrate 1) the bias due to maximization and also the inaccuracy of shortcut algorithms 2) when correlated variables are present and 3) when there is nonlinearity in net benefit functions. If relatively small correlation or nonlinearity is present, then the shortcut algorithm can be substantially inaccurate. Empirical investigation of the numbers of Monte Carlo samples suggests that fewer samples on the outer level and more on the inner level could be efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas for methodological development are set out. A wider application of partial EVPI is recommended both for greater understanding of decision uncertainty and for analyzing research priorities." @default.
- W2168448560 created "2016-06-24" @default.
- W2168448560 creator A5038809065 @default.
- W2168448560 creator A5052408374 @default.
- W2168448560 creator A5077201683 @default.
- W2168448560 creator A5086081444 @default.
- W2168448560 date "2007-07-01" @default.
- W2168448560 modified "2023-10-15" @default.
- W2168448560 title "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms" @default.
- W2168448560 cites W1490558235 @default.
- W2168448560 cites W1524506629 @default.
- W2168448560 cites W1571272128 @default.
- W2168448560 cites W1975371647 @default.
- W2168448560 cites W1990119044 @default.
- W2168448560 cites W1991444773 @default.
- W2168448560 cites W2023049016 @default.
- W2168448560 cites W2028532700 @default.
- W2168448560 cites W2036409715 @default.
- W2168448560 cites W2041908308 @default.
- W2168448560 cites W2048023415 @default.
- W2168448560 cites W2069629877 @default.
- W2168448560 cites W2073673004 @default.
- W2168448560 cites W2079258339 @default.
- W2168448560 cites W2082542772 @default.
- W2168448560 cites W2087025145 @default.
- W2168448560 cites W2091607524 @default.
- W2168448560 cites W2091822760 @default.
- W2168448560 cites W2094290836 @default.
- W2168448560 cites W2148427630 @default.
- W2168448560 cites W2156340103 @default.
- W2168448560 cites W2157477694 @default.
- W2168448560 cites W2161291623 @default.
- W2168448560 cites W2166420173 @default.
- W2168448560 cites W2411005310 @default.
- W2168448560 cites W2734648023 @default.
- W2168448560 doi "https://doi.org/10.1177/0272989x07302555" @default.
- W2168448560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17761960" @default.
- W2168448560 hasPublicationYear "2007" @default.
- W2168448560 type Work @default.
- W2168448560 sameAs 2168448560 @default.
- W2168448560 citedByCount "122" @default.
- W2168448560 countsByYear W21684485602012 @default.
- W2168448560 countsByYear W21684485602013 @default.
- W2168448560 countsByYear W21684485602014 @default.
- W2168448560 countsByYear W21684485602015 @default.
- W2168448560 countsByYear W21684485602016 @default.
- W2168448560 countsByYear W21684485602017 @default.
- W2168448560 countsByYear W21684485602018 @default.
- W2168448560 countsByYear W21684485602019 @default.
- W2168448560 countsByYear W21684485602020 @default.
- W2168448560 countsByYear W21684485602021 @default.
- W2168448560 countsByYear W21684485602022 @default.
- W2168448560 countsByYear W21684485602023 @default.
- W2168448560 crossrefType "journal-article" @default.
- W2168448560 hasAuthorship W2168448560A5038809065 @default.
- W2168448560 hasAuthorship W2168448560A5052408374 @default.
- W2168448560 hasAuthorship W2168448560A5077201683 @default.
- W2168448560 hasAuthorship W2168448560A5086081444 @default.
- W2168448560 hasBestOaLocation W21684485602 @default.
- W2168448560 hasConcept C105795698 @default.
- W2168448560 hasConcept C106131492 @default.
- W2168448560 hasConcept C11413529 @default.
- W2168448560 hasConcept C126255220 @default.
- W2168448560 hasConcept C140779682 @default.
- W2168448560 hasConcept C185592680 @default.
- W2168448560 hasConcept C19499675 @default.
- W2168448560 hasConcept C198531522 @default.
- W2168448560 hasConcept C2776330181 @default.
- W2168448560 hasConcept C31972630 @default.
- W2168448560 hasConcept C33923547 @default.
- W2168448560 hasConcept C41008148 @default.
- W2168448560 hasConcept C43617362 @default.
- W2168448560 hasConcept C45374587 @default.
- W2168448560 hasConcept C52740198 @default.
- W2168448560 hasConceptScore W2168448560C105795698 @default.
- W2168448560 hasConceptScore W2168448560C106131492 @default.
- W2168448560 hasConceptScore W2168448560C11413529 @default.
- W2168448560 hasConceptScore W2168448560C126255220 @default.
- W2168448560 hasConceptScore W2168448560C140779682 @default.
- W2168448560 hasConceptScore W2168448560C185592680 @default.
- W2168448560 hasConceptScore W2168448560C19499675 @default.
- W2168448560 hasConceptScore W2168448560C198531522 @default.
- W2168448560 hasConceptScore W2168448560C2776330181 @default.
- W2168448560 hasConceptScore W2168448560C31972630 @default.
- W2168448560 hasConceptScore W2168448560C33923547 @default.
- W2168448560 hasConceptScore W2168448560C41008148 @default.
- W2168448560 hasConceptScore W2168448560C43617362 @default.
- W2168448560 hasConceptScore W2168448560C45374587 @default.
- W2168448560 hasConceptScore W2168448560C52740198 @default.
- W2168448560 hasIssue "4" @default.
- W2168448560 hasLocation W21684485601 @default.
- W2168448560 hasLocation W21684485602 @default.
- W2168448560 hasLocation W21684485603 @default.
- W2168448560 hasOpenAccess W2168448560 @default.
- W2168448560 hasPrimaryLocation W21684485601 @default.
- W2168448560 hasRelatedWork W2017089693 @default.
- W2168448560 hasRelatedWork W2134539662 @default.
- W2168448560 hasRelatedWork W2161803855 @default.