Matches in SemOpenAlex for { <https://semopenalex.org/work/W2168658806> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2168658806 abstract "Nowadays, many organizations have relational databases with millions of records and an important question is how to extract information from them. This work proposes HTILDE (Hoeffding TILDE) to handle very large relational databases, based on the Inductive Logic Programming (ILP) system TILDE (Top-down Induction of Logical Decision Trees) and the propositional Very Fast Decision Tree (VFDT) learner. It is an incremental and anytime algorithm that uses the Hoeffding bound to find out the amount of examples that must be considered for choosing the best test for a node. The results show that, compared to TILDE, HTILDE generates theories from very large relational datasets more efficiently without harming their quality measures (F-measure, precision, recall and accuracy). Also, HTILDE learns less complex theories than TILDE." @default.
- W2168658806 created "2016-06-24" @default.
- W2168658806 creator A5012291023 @default.
- W2168658806 creator A5044955299 @default.
- W2168658806 date "2009-03-08" @default.
- W2168658806 modified "2023-09-26" @default.
- W2168658806 title "HTILDE" @default.
- W2168658806 cites W1501498539 @default.
- W2168658806 cites W1601142477 @default.
- W2168658806 cites W1985157189 @default.
- W2168658806 cites W1994326354 @default.
- W2168658806 cites W2010657328 @default.
- W2168658806 cites W2030012268 @default.
- W2168658806 cites W2068714596 @default.
- W2168658806 cites W2120199131 @default.
- W2168658806 cites W2520858206 @default.
- W2168658806 cites W3011601870 @default.
- W2168658806 cites W4233413206 @default.
- W2168658806 doi "https://doi.org/10.1145/1529282.1529610" @default.
- W2168658806 hasPublicationYear "2009" @default.
- W2168658806 type Work @default.
- W2168658806 sameAs 2168658806 @default.
- W2168658806 citedByCount "8" @default.
- W2168658806 countsByYear W21686588062012 @default.
- W2168658806 countsByYear W21686588062015 @default.
- W2168658806 countsByYear W21686588062016 @default.
- W2168658806 countsByYear W21686588062018 @default.
- W2168658806 countsByYear W21686588062019 @default.
- W2168658806 crossrefType "proceedings-article" @default.
- W2168658806 hasAuthorship W2168658806A5012291023 @default.
- W2168658806 hasAuthorship W2168658806A5044955299 @default.
- W2168658806 hasConcept C41008148 @default.
- W2168658806 hasConceptScore W2168658806C41008148 @default.
- W2168658806 hasLocation W21686588061 @default.
- W2168658806 hasOpenAccess W2168658806 @default.
- W2168658806 hasPrimaryLocation W21686588061 @default.
- W2168658806 hasRelatedWork W2093578348 @default.
- W2168658806 hasRelatedWork W2130043461 @default.
- W2168658806 hasRelatedWork W2350741829 @default.
- W2168658806 hasRelatedWork W2358668433 @default.
- W2168658806 hasRelatedWork W2376932109 @default.
- W2168658806 hasRelatedWork W2382290278 @default.
- W2168658806 hasRelatedWork W2390279801 @default.
- W2168658806 hasRelatedWork W2748952813 @default.
- W2168658806 hasRelatedWork W2899084033 @default.
- W2168658806 hasRelatedWork W3004735627 @default.
- W2168658806 isParatext "false" @default.
- W2168658806 isRetracted "false" @default.
- W2168658806 magId "2168658806" @default.
- W2168658806 workType "article" @default.