Matches in SemOpenAlex for { <https://semopenalex.org/work/W2168681504> ?p ?o ?g. }
- W2168681504 endingPage "4251" @default.
- W2168681504 startingPage "4241" @default.
- W2168681504 abstract "Blogs and social networks have recently become a valuable resource for mining sentiments in fields as diverse as customer relationship management, public opinion tracking and text filtering. In fact knowledge obtained from social networks such as Twitter and Facebook has been shown to be extremely valuable to marketing research companies, public opinion organizations and other text mining entities. However, Web texts have been classified as noisy as they represent considerable problems both at the lexical and the syntactic levels. In this research we used a random sample of 3516 tweets to evaluate consumers’ sentiment towards well-known brands such as Nokia, T-Mobile, IBM, KLM and DHL. We used an expert-predefined lexicon including around 6800 seed adjectives with known orientation to conduct the analysis. Our results indicate a generally positive consumer sentiment towards several famous brands. By using both a qualitative and quantitative methodology to analyze brands’ tweets, this study adds breadth and depth to the debate over attitudes towards cosmopolitan brands." @default.
- W2168681504 created "2016-06-24" @default.
- W2168681504 creator A5021722802 @default.
- W2168681504 date "2013-08-01" @default.
- W2168681504 modified "2023-10-15" @default.
- W2168681504 title "More than words: Social networks’ text mining for consumer brand sentiments" @default.
- W2168681504 cites W1964613733 @default.
- W2168681504 cites W1964867474 @default.
- W2168681504 cites W1966303645 @default.
- W2168681504 cites W1967807490 @default.
- W2168681504 cites W1969240017 @default.
- W2168681504 cites W1973899089 @default.
- W2168681504 cites W1983286042 @default.
- W2168681504 cites W1990339712 @default.
- W2168681504 cites W1990627567 @default.
- W2168681504 cites W2003409890 @default.
- W2168681504 cites W2004214228 @default.
- W2168681504 cites W2005624335 @default.
- W2168681504 cites W2009578396 @default.
- W2168681504 cites W2022829918 @default.
- W2168681504 cites W2029217231 @default.
- W2168681504 cites W2031774346 @default.
- W2168681504 cites W2034090215 @default.
- W2168681504 cites W2035067844 @default.
- W2168681504 cites W2037481123 @default.
- W2168681504 cites W2041587709 @default.
- W2168681504 cites W2048374711 @default.
- W2168681504 cites W2056640757 @default.
- W2168681504 cites W2067481542 @default.
- W2168681504 cites W2067767241 @default.
- W2168681504 cites W2069922379 @default.
- W2168681504 cites W2075878045 @default.
- W2168681504 cites W2084046180 @default.
- W2168681504 cites W2084791978 @default.
- W2168681504 cites W2099762866 @default.
- W2168681504 cites W2100154379 @default.
- W2168681504 cites W2100772444 @default.
- W2168681504 cites W2100897439 @default.
- W2168681504 cites W2106141635 @default.
- W2168681504 cites W2106738877 @default.
- W2168681504 cites W2109782117 @default.
- W2168681504 cites W2112422413 @default.
- W2168681504 cites W2112744748 @default.
- W2168681504 cites W2118459787 @default.
- W2168681504 cites W2122572908 @default.
- W2168681504 cites W2126854223 @default.
- W2168681504 cites W2132151262 @default.
- W2168681504 cites W2133341045 @default.
- W2168681504 cites W2138396541 @default.
- W2168681504 cites W2148034183 @default.
- W2168681504 cites W2149586631 @default.
- W2168681504 cites W2160660844 @default.
- W2168681504 cites W2166048187 @default.
- W2168681504 cites W2168625136 @default.
- W2168681504 cites W2169940701 @default.
- W2168681504 cites W2171468534 @default.
- W2168681504 cites W2699605041 @default.
- W2168681504 cites W3125618771 @default.
- W2168681504 cites W4231467394 @default.
- W2168681504 cites W4239946314 @default.
- W2168681504 cites W4240936076 @default.
- W2168681504 cites W4255173720 @default.
- W2168681504 doi "https://doi.org/10.1016/j.eswa.2013.01.019" @default.
- W2168681504 hasPublicationYear "2013" @default.
- W2168681504 type Work @default.
- W2168681504 sameAs 2168681504 @default.
- W2168681504 citedByCount "477" @default.
- W2168681504 countsByYear W21686815042012 @default.
- W2168681504 countsByYear W21686815042013 @default.
- W2168681504 countsByYear W21686815042014 @default.
- W2168681504 countsByYear W21686815042015 @default.
- W2168681504 countsByYear W21686815042016 @default.
- W2168681504 countsByYear W21686815042017 @default.
- W2168681504 countsByYear W21686815042018 @default.
- W2168681504 countsByYear W21686815042019 @default.
- W2168681504 countsByYear W21686815042020 @default.
- W2168681504 countsByYear W21686815042021 @default.
- W2168681504 countsByYear W21686815042022 @default.
- W2168681504 countsByYear W21686815042023 @default.
- W2168681504 crossrefType "journal-article" @default.
- W2168681504 hasAuthorship W2168681504A5021722802 @default.
- W2168681504 hasConcept C112698675 @default.
- W2168681504 hasConcept C136764020 @default.
- W2168681504 hasConcept C144024400 @default.
- W2168681504 hasConcept C144133560 @default.
- W2168681504 hasConcept C154945302 @default.
- W2168681504 hasConcept C171250308 @default.
- W2168681504 hasConcept C185592680 @default.
- W2168681504 hasConcept C192562407 @default.
- W2168681504 hasConcept C19417346 @default.
- W2168681504 hasConcept C198531522 @default.
- W2168681504 hasConcept C206345919 @default.
- W2168681504 hasConcept C2522767166 @default.
- W2168681504 hasConcept C2775936607 @default.
- W2168681504 hasConcept C2778121359 @default.
- W2168681504 hasConcept C31258907 @default.
- W2168681504 hasConcept C41008148 @default.
- W2168681504 hasConcept C43617362 @default.