Matches in SemOpenAlex for { <https://semopenalex.org/work/W2168789024> ?p ?o ?g. }
- W2168789024 endingPage "22" @default.
- W2168789024 startingPage "2" @default.
- W2168789024 abstract "Given current demographic trends and future growth projections, as much as 60% of the global population may suffer water scarcity by the year 2025. The water-use efficiency techniques used with conventional resources have been improved. However, water-scarce countries will have to rely more on the use of non-conventional water resources to partly alleviate water scarcity. Non-conventional water resources are either generated as a product of specialized processes such as desalination or need suitable pre-use treatment and/or appropriate soil–water–crop management strategies when used for irrigation. In water-scarce environments, such water resources are accessed through the desalination of seawater and highly brackish groundwater, the harvesting of rainwater, and the use of marginal-quality water resources for irrigation. The marginal-quality waters used for irrigation consist of wastewater, agricultural drainage water, and groundwater containing different types of salts. In many developing countries, a major part of the wastewater generated by domestic, commercial, and industrial sectors is used for crop production in an untreated or partly treated form. The protection of public health and the environment are the main concerns associated with uncontrolled wastewater irrigation. The use of saline and/or sodic drainage water and groundwater for agriculture is expected to increase. This warrants modifications in the existing soil, irrigation, and crop management practices used, in order to cope with the increases in salinity and sodicity that will occur. It is evident that water-scarce countries are not able to meet their food requirements using the conventional and non-conventional water resources available within their boundaries. Another option that may help to achieve food security in these countries is the ‘physical’ transportation of water and food items across basins, countries, and regions. Long-distance movement of surface freshwater or groundwater and transporting the water inland via large pipelines or across the sea in extremely large bags are examples of ‘physical’ transportation. Most interregional water transportation projects are still in their infancy, though the trade of food items between countries has been going on since international trade began. Although food is imported in the international food trade, the water used to produce the food that is imported into water-scarce countries is equivalent to large water savings for those countries: without the imports, almost the same amount of water would be needed to produce that food domestically. The term ‘virtual water’ has been used to illustrate the important role that water plays in the trade in food between countries with a water surplus and those with a water deficit, which must rely in part on importing food to ensure food security. Because the major food-exporting countries subsidize their agricultural production systems, food-importing countries need to consider both the policies and political situations of food-exporting countries, while simultaneously using food trade as a strategic instrument to overcome water scarcity and food deficits. This paper reviews the literature and issues associated with the use of non-conventional water resources and opportunities for achieving food security in water-scarce countries." @default.
- W2168789024 created "2016-06-24" @default.
- W2168789024 creator A5001266147 @default.
- W2168789024 creator A5018611615 @default.
- W2168789024 creator A5020778161 @default.
- W2168789024 creator A5041324300 @default.
- W2168789024 creator A5058459331 @default.
- W2168789024 date "2007-01-01" @default.
- W2168789024 modified "2023-10-17" @default.
- W2168789024 title "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries" @default.
- W2168789024 cites W111066708 @default.
- W2168789024 cites W1172684729 @default.
- W2168789024 cites W1300344 @default.
- W2168789024 cites W1510646606 @default.
- W2168789024 cites W1528667717 @default.
- W2168789024 cites W1552015165 @default.
- W2168789024 cites W165154121 @default.
- W2168789024 cites W1796261628 @default.
- W2168789024 cites W1968553955 @default.
- W2168789024 cites W1969998802 @default.
- W2168789024 cites W1986494092 @default.
- W2168789024 cites W1996143378 @default.
- W2168789024 cites W1996927484 @default.
- W2168789024 cites W1998999757 @default.
- W2168789024 cites W2005022589 @default.
- W2168789024 cites W2006847610 @default.
- W2168789024 cites W2007631270 @default.
- W2168789024 cites W2022003337 @default.
- W2168789024 cites W2023528362 @default.
- W2168789024 cites W2039203839 @default.
- W2168789024 cites W2045744394 @default.
- W2168789024 cites W2051665451 @default.
- W2168789024 cites W2053124347 @default.
- W2168789024 cites W2053563109 @default.
- W2168789024 cites W2055662569 @default.
- W2168789024 cites W2060636533 @default.
- W2168789024 cites W2062055984 @default.
- W2168789024 cites W2073524102 @default.
- W2168789024 cites W2079039253 @default.
- W2168789024 cites W2089004352 @default.
- W2168789024 cites W2092370453 @default.
- W2168789024 cites W2101724108 @default.
- W2168789024 cites W2110840130 @default.
- W2168789024 cites W2112118721 @default.
- W2168789024 cites W2113406404 @default.
- W2168789024 cites W2114484185 @default.
- W2168789024 cites W2126593516 @default.
- W2168789024 cites W2141894506 @default.
- W2168789024 cites W2169441828 @default.
- W2168789024 cites W2170050635 @default.
- W2168789024 cites W4230086855 @default.
- W2168789024 cites W4239448800 @default.
- W2168789024 cites W4244005104 @default.
- W2168789024 cites W4253858358 @default.
- W2168789024 cites W96229544 @default.
- W2168789024 doi "https://doi.org/10.1016/j.agwat.2006.03.018" @default.
- W2168789024 hasPublicationYear "2007" @default.
- W2168789024 type Work @default.
- W2168789024 sameAs 2168789024 @default.
- W2168789024 citedByCount "385" @default.
- W2168789024 countsByYear W21687890242012 @default.
- W2168789024 countsByYear W21687890242013 @default.
- W2168789024 countsByYear W21687890242014 @default.
- W2168789024 countsByYear W21687890242015 @default.
- W2168789024 countsByYear W21687890242016 @default.
- W2168789024 countsByYear W21687890242017 @default.
- W2168789024 countsByYear W21687890242018 @default.
- W2168789024 countsByYear W21687890242019 @default.
- W2168789024 countsByYear W21687890242020 @default.
- W2168789024 countsByYear W21687890242021 @default.
- W2168789024 countsByYear W21687890242022 @default.
- W2168789024 countsByYear W21687890242023 @default.
- W2168789024 crossrefType "journal-article" @default.
- W2168789024 hasAuthorship W2168789024A5001266147 @default.
- W2168789024 hasAuthorship W2168789024A5018611615 @default.
- W2168789024 hasAuthorship W2168789024A5020778161 @default.
- W2168789024 hasAuthorship W2168789024A5041324300 @default.
- W2168789024 hasAuthorship W2168789024A5058459331 @default.
- W2168789024 hasConcept C109747225 @default.
- W2168789024 hasConcept C110158866 @default.
- W2168789024 hasConcept C118178180 @default.
- W2168789024 hasConcept C118518473 @default.
- W2168789024 hasConcept C129513315 @default.
- W2168789024 hasConcept C144024400 @default.
- W2168789024 hasConcept C149923435 @default.
- W2168789024 hasConcept C153823671 @default.
- W2168789024 hasConcept C162324750 @default.
- W2168789024 hasConcept C166957645 @default.
- W2168789024 hasConcept C175444787 @default.
- W2168789024 hasConcept C176205827 @default.
- W2168789024 hasConcept C18903297 @default.
- W2168789024 hasConcept C205649164 @default.
- W2168789024 hasConcept C2776870568 @default.
- W2168789024 hasConcept C2778570914 @default.
- W2168789024 hasConcept C2908647359 @default.
- W2168789024 hasConcept C39432304 @default.
- W2168789024 hasConcept C41625074 @default.
- W2168789024 hasConcept C51193700 @default.