Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169016198> ?p ?o ?g. }
- W2169016198 endingPage "1970" @default.
- W2169016198 startingPage "1957" @default.
- W2169016198 abstract "Abstract Aim The aims of this work were (1) to study how well land‐cover and climatic data are capable of explaining distribution patterns of ten bird species breeding and/or feeding primarily on marshes and other wetlands and (2) to compare the differences between red‐listed and common marshland species in explanatory variables, and to study the predictability of their distribution patterns. Location Finland, northern Europe. Methods The data of the bird atlas survey carried out in 1986–89 using a 10 × 10 km uniform grid system in Finland were used in the analyses. Land‐cover data based on CORINE (Coordination of Information on the Environment) classification and climatic variables were compiled using the same 10 × 10 km grid. Generalized additive models (GAM) with a stepwise selection procedure were used to select relevant explanatory variables and to examine the complexity of the response shapes of the different species to each variable. The original data set was randomly divided into model training (70%) and model evaluation (30%) sets. The final models of common and red‐listed bird species richness were validated by fitting them to the model evaluation set, and the correlation between observed and predicted species richness was calculated. We assessed the discrimination ability of the binary models (single species) with the area under the curve (AUC) of a receiver operating characteristic (ROC) plot and the Kappa coefficient. Results Cover of marshland, shoreline length and mean temperature in April–June were significantly ( P < 0.01) related to the common marshland species richness. Cover and clumping of marshland and mean temperature and precipitation in April–June were selected in the model of red‐listed marshland species richness. The level of discrimination in our single species models varied in ROC from fair to excellent (AUC values 0.70–0.95). Cover of marshland was included in all GAM models built for the target species, but clumping of marshland, shoreline length and cover of mires also appeared as important predictors in single species models. Seven species had statistically significant relationships with climatic variables in the multivariate GAMs. Cover of marshland was highest in squares in which the red‐listed bittern Botaurus stellaris , marsh harrier Circus aeruginosus and great reed warbler Acrocephalus arundinaceus and the water rail Rallus aquaticus were observed. Main conclusions Cover of marshland was the only variable which was included in all the models, reinforcing the close connection between the studied species and marshlands. Broad‐scale clumping of marshlands was important for the red‐listed species, probably due to the much lower population sizes of red‐listed species than those of common species. Land‐cover data produced in CORINE seems to be well suited for modelling the distribution patterns of marshland birds. Although climatic variables also strongly affect the studied marshland birds, habitat availability plays a crucial role in their occurrence. The distribution patterns of marshland birds at the scale of 10 × 10 km reflect the interplay between habitat availability and direct climatic variables." @default.
- W2169016198 created "2016-06-24" @default.
- W2169016198 creator A5011825827 @default.
- W2169016198 creator A5033089242 @default.
- W2169016198 creator A5045167212 @default.
- W2169016198 creator A5080656961 @default.
- W2169016198 date "2005-09-05" @default.
- W2169016198 modified "2023-10-11" @default.
- W2169016198 title "Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate" @default.
- W2169016198 cites W1513618424 @default.
- W2169016198 cites W1766029576 @default.
- W2169016198 cites W1904722952 @default.
- W2169016198 cites W1972794181 @default.
- W2169016198 cites W1977569361 @default.
- W2169016198 cites W1978103198 @default.
- W2169016198 cites W1979083159 @default.
- W2169016198 cites W1985414380 @default.
- W2169016198 cites W1995793061 @default.
- W2169016198 cites W2000297055 @default.
- W2169016198 cites W2000811798 @default.
- W2169016198 cites W2022909546 @default.
- W2169016198 cites W2024649846 @default.
- W2169016198 cites W2024975228 @default.
- W2169016198 cites W2025662875 @default.
- W2169016198 cites W2028754344 @default.
- W2169016198 cites W2040766929 @default.
- W2169016198 cites W2041552914 @default.
- W2169016198 cites W2050570700 @default.
- W2169016198 cites W2052663747 @default.
- W2169016198 cites W2059269539 @default.
- W2169016198 cites W2064760278 @default.
- W2169016198 cites W2072395652 @default.
- W2169016198 cites W2075184300 @default.
- W2169016198 cites W2077992994 @default.
- W2169016198 cites W2078273014 @default.
- W2169016198 cites W2081959386 @default.
- W2169016198 cites W2088626174 @default.
- W2169016198 cites W2089454337 @default.
- W2169016198 cites W2093230627 @default.
- W2169016198 cites W2101973598 @default.
- W2169016198 cites W2110022170 @default.
- W2169016198 cites W2115268776 @default.
- W2169016198 cites W2115301899 @default.
- W2169016198 cites W2119195225 @default.
- W2169016198 cites W2125725948 @default.
- W2169016198 cites W2127120871 @default.
- W2169016198 cites W2130029012 @default.
- W2169016198 cites W2133501143 @default.
- W2169016198 cites W2138973222 @default.
- W2169016198 cites W2146272590 @default.
- W2169016198 cites W2157482817 @default.
- W2169016198 cites W2163614163 @default.
- W2169016198 cites W2163816695 @default.
- W2169016198 cites W2164777277 @default.
- W2169016198 cites W2167827350 @default.
- W2169016198 cites W2168460539 @default.
- W2169016198 cites W2169544491 @default.
- W2169016198 cites W2326712955 @default.
- W2169016198 cites W2329752201 @default.
- W2169016198 cites W317901007 @default.
- W2169016198 cites W4301136124 @default.
- W2169016198 doi "https://doi.org/10.1111/j.1365-2699.2005.01326.x" @default.
- W2169016198 hasPublicationYear "2005" @default.
- W2169016198 type Work @default.
- W2169016198 sameAs 2169016198 @default.
- W2169016198 citedByCount "80" @default.
- W2169016198 countsByYear W21690161982012 @default.
- W2169016198 countsByYear W21690161982013 @default.
- W2169016198 countsByYear W21690161982014 @default.
- W2169016198 countsByYear W21690161982015 @default.
- W2169016198 countsByYear W21690161982016 @default.
- W2169016198 countsByYear W21690161982017 @default.
- W2169016198 countsByYear W21690161982018 @default.
- W2169016198 countsByYear W21690161982019 @default.
- W2169016198 countsByYear W21690161982020 @default.
- W2169016198 countsByYear W21690161982021 @default.
- W2169016198 countsByYear W21690161982022 @default.
- W2169016198 countsByYear W21690161982023 @default.
- W2169016198 crossrefType "journal-article" @default.
- W2169016198 hasAuthorship W2169016198A5011825827 @default.
- W2169016198 hasAuthorship W2169016198A5033089242 @default.
- W2169016198 hasAuthorship W2169016198A5045167212 @default.
- W2169016198 hasAuthorship W2169016198A5080656961 @default.
- W2169016198 hasConcept C100970517 @default.
- W2169016198 hasConcept C105795698 @default.
- W2169016198 hasConcept C132124917 @default.
- W2169016198 hasConcept C175570560 @default.
- W2169016198 hasConcept C185933670 @default.
- W2169016198 hasConcept C18903297 @default.
- W2169016198 hasConcept C194648359 @default.
- W2169016198 hasConcept C205649164 @default.
- W2169016198 hasConcept C2780648208 @default.
- W2169016198 hasConcept C33923547 @default.
- W2169016198 hasConcept C39432304 @default.
- W2169016198 hasConcept C4792198 @default.
- W2169016198 hasConcept C53565203 @default.
- W2169016198 hasConcept C67268981 @default.
- W2169016198 hasConcept C67715294 @default.