Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169043804> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2169043804 abstract "Performing maximum-likelihood estimation for parameters in an exponential random graph model is challenging because of the unknown normalizing constant. Geyer and Thompson (1992) provide a Monte Carlo algorithm that uses samples from a distribution with known parameters to approximate the full likelihood, which is then maximized to estimate the MLE. We refine the approximation to use sample draws collected from di! erently parameterized distributions, increasing the e! ective sample size and improving the accuracy of the MLE estimate. Substantially lower estimation variance is demonstrated in simulated and actual network data. We also propose a new method for finding a starting point: scaling the MLE parameters of a small graph subsampled from the original graph. Through simulation with the triad model, this starting point produces convergence in many cases where the standard starting point" @default.
- W2169043804 created "2016-06-24" @default.
- W2169043804 creator A5012820890 @default.
- W2169043804 creator A5056193128 @default.
- W2169043804 creator A5082714791 @default.
- W2169043804 date "2009-03-27" @default.
- W2169043804 modified "2023-09-23" @default.
- W2169043804 title "Monte Carlo Maximum Likelihood for Exponential Random Graph Models: From Snowballs to Umbrella Densities" @default.
- W2169043804 cites W107938046 @default.
- W2169043804 cites W1573937741 @default.
- W2169043804 cites W2069412834 @default.
- W2169043804 cites W2069739265 @default.
- W2169043804 cites W2135838082 @default.
- W2169043804 cites W2136676173 @default.
- W2169043804 cites W3101413764 @default.
- W2169043804 hasPublicationYear "2009" @default.
- W2169043804 type Work @default.
- W2169043804 sameAs 2169043804 @default.
- W2169043804 citedByCount "6" @default.
- W2169043804 countsByYear W21690438042013 @default.
- W2169043804 countsByYear W21690438042015 @default.
- W2169043804 countsByYear W21690438042016 @default.
- W2169043804 countsByYear W21690438042020 @default.
- W2169043804 crossrefType "journal-article" @default.
- W2169043804 hasAuthorship W2169043804A5012820890 @default.
- W2169043804 hasAuthorship W2169043804A5056193128 @default.
- W2169043804 hasAuthorship W2169043804A5082714791 @default.
- W2169043804 hasConcept C105795698 @default.
- W2169043804 hasConcept C11413529 @default.
- W2169043804 hasConcept C114614502 @default.
- W2169043804 hasConcept C132525143 @default.
- W2169043804 hasConcept C134306372 @default.
- W2169043804 hasConcept C151376022 @default.
- W2169043804 hasConcept C165464430 @default.
- W2169043804 hasConcept C167928553 @default.
- W2169043804 hasConcept C19499675 @default.
- W2169043804 hasConcept C28826006 @default.
- W2169043804 hasConcept C30549945 @default.
- W2169043804 hasConcept C33923547 @default.
- W2169043804 hasConcept C41426520 @default.
- W2169043804 hasConcept C47458327 @default.
- W2169043804 hasConceptScore W2169043804C105795698 @default.
- W2169043804 hasConceptScore W2169043804C11413529 @default.
- W2169043804 hasConceptScore W2169043804C114614502 @default.
- W2169043804 hasConceptScore W2169043804C132525143 @default.
- W2169043804 hasConceptScore W2169043804C134306372 @default.
- W2169043804 hasConceptScore W2169043804C151376022 @default.
- W2169043804 hasConceptScore W2169043804C165464430 @default.
- W2169043804 hasConceptScore W2169043804C167928553 @default.
- W2169043804 hasConceptScore W2169043804C19499675 @default.
- W2169043804 hasConceptScore W2169043804C28826006 @default.
- W2169043804 hasConceptScore W2169043804C30549945 @default.
- W2169043804 hasConceptScore W2169043804C33923547 @default.
- W2169043804 hasConceptScore W2169043804C41426520 @default.
- W2169043804 hasConceptScore W2169043804C47458327 @default.
- W2169043804 hasOpenAccess W2169043804 @default.
- W2169043804 hasRelatedWork W107938046 @default.
- W2169043804 hasRelatedWork W137461834 @default.
- W2169043804 hasRelatedWork W1573937741 @default.
- W2169043804 hasRelatedWork W1981093558 @default.
- W2169043804 hasRelatedWork W2015457903 @default.
- W2169043804 hasRelatedWork W2063547307 @default.
- W2169043804 hasRelatedWork W2094830561 @default.
- W2169043804 hasRelatedWork W2125484070 @default.
- W2169043804 hasRelatedWork W2136676173 @default.
- W2169043804 hasRelatedWork W2160268549 @default.
- W2169043804 hasRelatedWork W2182486461 @default.
- W2169043804 hasRelatedWork W2289982274 @default.
- W2169043804 hasRelatedWork W2550540699 @default.
- W2169043804 hasRelatedWork W2886282803 @default.
- W2169043804 hasRelatedWork W3122278466 @default.
- W2169043804 hasRelatedWork W3155890629 @default.
- W2169043804 hasRelatedWork W3179933300 @default.
- W2169043804 hasRelatedWork W5697435 @default.
- W2169043804 hasRelatedWork W838594953 @default.
- W2169043804 hasRelatedWork W2739293382 @default.
- W2169043804 isParatext "false" @default.
- W2169043804 isRetracted "false" @default.
- W2169043804 magId "2169043804" @default.
- W2169043804 workType "article" @default.