Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169075713> ?p ?o ?g. }
- W2169075713 endingPage "148" @default.
- W2169075713 startingPage "137" @default.
- W2169075713 abstract "Tensors (also called multiway arrays) are a generalization of vectors and matrices to higher dimensions based on multilinear algebra. The development of theory and algorithms for tensor decompositions (factorizations) has been an active area of study within the past decade, e.g., [1] and [2]. These methods have been successfully applied to many problems in unsupervised learning and exploratory data analysis. Multiway analysis enables one to effectively capture the multilinear structure of the data, which is usually available as a priori information about the data. Hence, it might provide advantages over matrix factorizations by enabling one to more effectively use the underlying structure of the data. Besides unsupervised tensor decompositions, supervised tensor subspace regression and classification formulations have been also successfully applied to a variety of fields including chemometrics, signal processing, computer vision, and neuroscience." @default.
- W2169075713 created "2016-06-24" @default.
- W2169075713 creator A5018676117 @default.
- W2169075713 creator A5060798483 @default.
- W2169075713 creator A5069553088 @default.
- W2169075713 creator A5083182987 @default.
- W2169075713 creator A5090101808 @default.
- W2169075713 date "2013-07-01" @default.
- W2169075713 modified "2023-10-16" @default.
- W2169075713 title "Kernelization of Tensor-Based Models for Multiway Data Analysis: Processing of Multidimensional Structured Data" @default.
- W2169075713 cites W1510073064 @default.
- W2169075713 cites W1984983329 @default.
- W2169075713 cites W1985188514 @default.
- W2169075713 cites W1986580828 @default.
- W2169075713 cites W1988001416 @default.
- W2169075713 cites W1989746184 @default.
- W2169075713 cites W2012870310 @default.
- W2169075713 cites W2013912476 @default.
- W2169075713 cites W2024165284 @default.
- W2169075713 cites W2026941375 @default.
- W2169075713 cites W2056380775 @default.
- W2169075713 cites W2072248825 @default.
- W2169075713 cites W2100235303 @default.
- W2169075713 cites W2108995755 @default.
- W2169075713 cites W2113385936 @default.
- W2169075713 cites W2122319321 @default.
- W2169075713 cites W2125027820 @default.
- W2169075713 cites W2128869053 @default.
- W2169075713 cites W2132481658 @default.
- W2169075713 cites W2140095548 @default.
- W2169075713 cites W2142197755 @default.
- W2169075713 cites W2146656095 @default.
- W2169075713 cites W2158169396 @default.
- W2169075713 cites W2163273012 @default.
- W2169075713 cites W2172207578 @default.
- W2169075713 cites W2404400936 @default.
- W2169075713 cites W4249279051 @default.
- W2169075713 doi "https://doi.org/10.1109/msp.2013.2255334" @default.
- W2169075713 hasPublicationYear "2013" @default.
- W2169075713 type Work @default.
- W2169075713 sameAs 2169075713 @default.
- W2169075713 citedByCount "62" @default.
- W2169075713 countsByYear W21690757132013 @default.
- W2169075713 countsByYear W21690757132014 @default.
- W2169075713 countsByYear W21690757132015 @default.
- W2169075713 countsByYear W21690757132016 @default.
- W2169075713 countsByYear W21690757132017 @default.
- W2169075713 countsByYear W21690757132018 @default.
- W2169075713 countsByYear W21690757132019 @default.
- W2169075713 countsByYear W21690757132020 @default.
- W2169075713 countsByYear W21690757132021 @default.
- W2169075713 countsByYear W21690757132022 @default.
- W2169075713 countsByYear W21690757132023 @default.
- W2169075713 crossrefType "journal-article" @default.
- W2169075713 hasAuthorship W2169075713A5018676117 @default.
- W2169075713 hasAuthorship W2169075713A5060798483 @default.
- W2169075713 hasAuthorship W2169075713A5069553088 @default.
- W2169075713 hasAuthorship W2169075713A5083182987 @default.
- W2169075713 hasAuthorship W2169075713A5090101808 @default.
- W2169075713 hasConcept C105795698 @default.
- W2169075713 hasConcept C124101348 @default.
- W2169075713 hasConcept C132525143 @default.
- W2169075713 hasConcept C134306372 @default.
- W2169075713 hasConcept C155281189 @default.
- W2169075713 hasConcept C158457486 @default.
- W2169075713 hasConcept C169191187 @default.
- W2169075713 hasConcept C202444582 @default.
- W2169075713 hasConcept C207225210 @default.
- W2169075713 hasConcept C3019022308 @default.
- W2169075713 hasConcept C33923547 @default.
- W2169075713 hasConcept C41008148 @default.
- W2169075713 hasConcept C67186912 @default.
- W2169075713 hasConcept C77088390 @default.
- W2169075713 hasConcept C80444323 @default.
- W2169075713 hasConceptScore W2169075713C105795698 @default.
- W2169075713 hasConceptScore W2169075713C124101348 @default.
- W2169075713 hasConceptScore W2169075713C132525143 @default.
- W2169075713 hasConceptScore W2169075713C134306372 @default.
- W2169075713 hasConceptScore W2169075713C155281189 @default.
- W2169075713 hasConceptScore W2169075713C158457486 @default.
- W2169075713 hasConceptScore W2169075713C169191187 @default.
- W2169075713 hasConceptScore W2169075713C202444582 @default.
- W2169075713 hasConceptScore W2169075713C207225210 @default.
- W2169075713 hasConceptScore W2169075713C3019022308 @default.
- W2169075713 hasConceptScore W2169075713C33923547 @default.
- W2169075713 hasConceptScore W2169075713C41008148 @default.
- W2169075713 hasConceptScore W2169075713C67186912 @default.
- W2169075713 hasConceptScore W2169075713C77088390 @default.
- W2169075713 hasConceptScore W2169075713C80444323 @default.
- W2169075713 hasIssue "4" @default.
- W2169075713 hasLocation W21690757131 @default.
- W2169075713 hasOpenAccess W2169075713 @default.
- W2169075713 hasPrimaryLocation W21690757131 @default.
- W2169075713 hasRelatedWork W1834239737 @default.
- W2169075713 hasRelatedWork W2040568056 @default.
- W2169075713 hasRelatedWork W204208419 @default.
- W2169075713 hasRelatedWork W2106202144 @default.
- W2169075713 hasRelatedWork W2146253100 @default.