Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169135280> ?p ?o ?g. }
- W2169135280 endingPage "60" @default.
- W2169135280 startingPage "18" @default.
- W2169135280 abstract "Adaptive filtering algorithms fall into four main groups: recursive least squares (RLS) algorithms and the corresponding fast versions; QR- and inverse QR-least squares algorithms; least squares lattice (LSL) and QR decomposition-based least squares lattice (QRD-LSL) algorithms; and gradient-based algorithms such as the least-mean square (LMS) algorithm. Our purpose in this article is to present yet another approach, for the sake of achieving two important goals. The first one is to show how several different variants of the recursive least-squares algorithm can be directly related to the widely studied Kalman filtering problem of estimation and control. Our second important goal is to present all the different versions of the RLS algorithm in computationally convenient square-root forms: a prearray of numbers has to be triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of numbers. The quantities needed to form the next prearray can then be read off from the entries of the postarray, and the procedure can be repeated; the explicit forms of the rotation matrices are not needed in most cases.< <ETX xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>></ETX>" @default.
- W2169135280 created "2016-06-24" @default.
- W2169135280 creator A5014088470 @default.
- W2169135280 creator A5091103447 @default.
- W2169135280 date "1994-07-01" @default.
- W2169135280 modified "2023-10-01" @default.
- W2169135280 title "A state-space approach to adaptive RLS filtering" @default.
- W2169135280 cites W1539860142 @default.
- W2169135280 cites W1592016513 @default.
- W2169135280 cites W1991352052 @default.
- W2169135280 cites W1996701813 @default.
- W2169135280 cites W2012403366 @default.
- W2169135280 cites W2014312865 @default.
- W2169135280 cites W2021496897 @default.
- W2169135280 cites W2023812473 @default.
- W2169135280 cites W2026388893 @default.
- W2169135280 cites W2034932731 @default.
- W2169135280 cites W2035288273 @default.
- W2169135280 cites W2036050714 @default.
- W2169135280 cites W2042106612 @default.
- W2169135280 cites W2044841440 @default.
- W2169135280 cites W2083402998 @default.
- W2169135280 cites W2087006469 @default.
- W2169135280 cites W2093356003 @default.
- W2169135280 cites W2094280271 @default.
- W2169135280 cites W2098566321 @default.
- W2169135280 cites W2101548685 @default.
- W2169135280 cites W2101903757 @default.
- W2169135280 cites W2105934661 @default.
- W2169135280 cites W2107503352 @default.
- W2169135280 cites W2117528321 @default.
- W2169135280 cites W2123261962 @default.
- W2169135280 cites W2126832605 @default.
- W2169135280 cites W2131483600 @default.
- W2169135280 cites W2143822684 @default.
- W2169135280 cites W2150809466 @default.
- W2169135280 cites W2155681722 @default.
- W2169135280 cites W2157850096 @default.
- W2169135280 cites W2160145013 @default.
- W2169135280 cites W2163235387 @default.
- W2169135280 cites W2165653503 @default.
- W2169135280 cites W2166603312 @default.
- W2169135280 cites W2171899142 @default.
- W2169135280 cites W2172190709 @default.
- W2169135280 cites W4239427890 @default.
- W2169135280 doi "https://doi.org/10.1109/79.295229" @default.
- W2169135280 hasPublicationYear "1994" @default.
- W2169135280 type Work @default.
- W2169135280 sameAs 2169135280 @default.
- W2169135280 citedByCount "411" @default.
- W2169135280 countsByYear W21691352802012 @default.
- W2169135280 countsByYear W21691352802013 @default.
- W2169135280 countsByYear W21691352802014 @default.
- W2169135280 countsByYear W21691352802015 @default.
- W2169135280 countsByYear W21691352802016 @default.
- W2169135280 countsByYear W21691352802017 @default.
- W2169135280 countsByYear W21691352802018 @default.
- W2169135280 countsByYear W21691352802019 @default.
- W2169135280 countsByYear W21691352802020 @default.
- W2169135280 countsByYear W21691352802021 @default.
- W2169135280 countsByYear W21691352802022 @default.
- W2169135280 countsByYear W21691352802023 @default.
- W2169135280 crossrefType "journal-article" @default.
- W2169135280 hasAuthorship W2169135280A5014088470 @default.
- W2169135280 hasAuthorship W2169135280A5091103447 @default.
- W2169135280 hasBestOaLocation W21691352802 @default.
- W2169135280 hasConcept C102248274 @default.
- W2169135280 hasConcept C105795698 @default.
- W2169135280 hasConcept C11413529 @default.
- W2169135280 hasConcept C121332964 @default.
- W2169135280 hasConcept C145249878 @default.
- W2169135280 hasConcept C154945302 @default.
- W2169135280 hasConcept C157286648 @default.
- W2169135280 hasConcept C158693339 @default.
- W2169135280 hasConcept C185429906 @default.
- W2169135280 hasConcept C188060507 @default.
- W2169135280 hasConcept C24890656 @default.
- W2169135280 hasConcept C2781204021 @default.
- W2169135280 hasConcept C32617633 @default.
- W2169135280 hasConcept C33923547 @default.
- W2169135280 hasConcept C41008148 @default.
- W2169135280 hasConcept C62520636 @default.
- W2169135280 hasConcept C74050887 @default.
- W2169135280 hasConcept C9936470 @default.
- W2169135280 hasConceptScore W2169135280C102248274 @default.
- W2169135280 hasConceptScore W2169135280C105795698 @default.
- W2169135280 hasConceptScore W2169135280C11413529 @default.
- W2169135280 hasConceptScore W2169135280C121332964 @default.
- W2169135280 hasConceptScore W2169135280C145249878 @default.
- W2169135280 hasConceptScore W2169135280C154945302 @default.
- W2169135280 hasConceptScore W2169135280C157286648 @default.
- W2169135280 hasConceptScore W2169135280C158693339 @default.
- W2169135280 hasConceptScore W2169135280C185429906 @default.
- W2169135280 hasConceptScore W2169135280C188060507 @default.
- W2169135280 hasConceptScore W2169135280C24890656 @default.
- W2169135280 hasConceptScore W2169135280C2781204021 @default.
- W2169135280 hasConceptScore W2169135280C32617633 @default.
- W2169135280 hasConceptScore W2169135280C33923547 @default.