Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169176543> ?p ?o ?g. }
- W2169176543 endingPage "54" @default.
- W2169176543 startingPage "48" @default.
- W2169176543 abstract "ObjectiveA recent study found that a combination of 6 anterior segment optical coherence tomography (ASOCT) parameters (anterior chamber area, volume, and width [ACA, ACV, ACW], lens vault [LV], iris thickness at 750 μm from the scleral spur, and iris cross-sectional area) explain >80% of the variability in angle width. The aim of this study was to evaluate classification algorithms based on ASOCT measurements for the detection of gonioscopic angle closure.DesignCross-sectional study.ParticipantsWe included 2047 subjects aged ≥50 years.MethodsParticipants underwent gonioscopy and ASOCT (Carl Zeiss Meditec, Dublin, CA). Customized software (Zhongshan Angle Assessment Program, Guangzhou, China) was used to measure ASOCT parameters in horizontal ASOCT scans. Six classification algorithms were considered (stepwise logistic regression with Akaike information criterion, Random Forest, multivariate adaptive regression splines, support vector machine, naïve Bayes' classification, and recursive partitioning). The ASOCT-derived parameters were incorporated to generate point and interval estimates of the area under the receiver operating characteristic (AUC) curves for these algorithms using 10-fold cross-validation as well as 50:50 training and validation.Main Outcome MeasuresWe assessed ASOCT measurements and angle closure.ResultsData on 1368 subjects, including 295 (21.6%) subjects with gonioscopic angle closure were available for analysis. The mean (± standard deviation) age was 62.4±7.5 years and 54.8% were females. Angle closure subjects were older and had smaller ACW, ACA, and ACV; greater LV; and thicker irides (P<0.001 for all). For both, the 10-fold cross-validation and the 50:50 training and validation methods, stepwise logistic regression was the best algorithm for detecting eyes with gonioscopic angle closure with testing set AUC of 0.954 (95% confidence interval [CI], 0.942–0.966) and 0.962 (95% CI, 0.948–0.975) respectively, whereas recursive partitioning had relatively the poorest performance with testing set AUC 0.860 (95% CI, 0.790–0.930) and 0.905 (95% CI, 0.876–0.933), respectively. This algorithm performed similarly well (AUC, 0.957) in a second independent sample of 200 angle closure subjects and 302 normal controls.ConclusionsA classification algorithm based on stepwise logistic regression that used a combination of 6 parameters obtained from a single horizontal ASOCT scan identified subjects with gonioscopic angle closure >95% of the time.Financial Disclosure(s)The authors have no proprietary or commercial interest in any of the materials discussed in this article. A recent study found that a combination of 6 anterior segment optical coherence tomography (ASOCT) parameters (anterior chamber area, volume, and width [ACA, ACV, ACW], lens vault [LV], iris thickness at 750 μm from the scleral spur, and iris cross-sectional area) explain >80% of the variability in angle width. The aim of this study was to evaluate classification algorithms based on ASOCT measurements for the detection of gonioscopic angle closure. Cross-sectional study. We included 2047 subjects aged ≥50 years. Participants underwent gonioscopy and ASOCT (Carl Zeiss Meditec, Dublin, CA). Customized software (Zhongshan Angle Assessment Program, Guangzhou, China) was used to measure ASOCT parameters in horizontal ASOCT scans. Six classification algorithms were considered (stepwise logistic regression with Akaike information criterion, Random Forest, multivariate adaptive regression splines, support vector machine, naïve Bayes' classification, and recursive partitioning). The ASOCT-derived parameters were incorporated to generate point and interval estimates of the area under the receiver operating characteristic (AUC) curves for these algorithms using 10-fold cross-validation as well as 50:50 training and validation. We assessed ASOCT measurements and angle closure. Data on 1368 subjects, including 295 (21.6%) subjects with gonioscopic angle closure were available for analysis. The mean (± standard deviation) age was 62.4±7.5 years and 54.8% were females. Angle closure subjects were older and had smaller ACW, ACA, and ACV; greater LV; and thicker irides (P<0.001 for all). For both, the 10-fold cross-validation and the 50:50 training and validation methods, stepwise logistic regression was the best algorithm for detecting eyes with gonioscopic angle closure with testing set AUC of 0.954 (95% confidence interval [CI], 0.942–0.966) and 0.962 (95% CI, 0.948–0.975) respectively, whereas recursive partitioning had relatively the poorest performance with testing set AUC 0.860 (95% CI, 0.790–0.930) and 0.905 (95% CI, 0.876–0.933), respectively. This algorithm performed similarly well (AUC, 0.957) in a second independent sample of 200 angle closure subjects and 302 normal controls. A classification algorithm based on stepwise logistic regression that used a combination of 6 parameters obtained from a single horizontal ASOCT scan identified subjects with gonioscopic angle closure >95% of the time." @default.
- W2169176543 created "2016-06-24" @default.
- W2169176543 creator A5022464374 @default.
- W2169176543 creator A5050519796 @default.
- W2169176543 creator A5057053486 @default.
- W2169176543 creator A5061735128 @default.
- W2169176543 creator A5064201883 @default.
- W2169176543 creator A5069488977 @default.
- W2169176543 creator A5072258594 @default.
- W2169176543 creator A5080251127 @default.
- W2169176543 creator A5086892556 @default.
- W2169176543 creator A5087613983 @default.
- W2169176543 date "2013-01-01" @default.
- W2169176543 modified "2023-10-14" @default.
- W2169176543 title "Classification Algorithms Based on Anterior Segment Optical Coherence Tomography Measurements for Detection of Angle Closure" @default.
- W2169176543 cites W1981758197 @default.
- W2169176543 cites W1984106768 @default.
- W2169176543 cites W1989658706 @default.
- W2169176543 cites W2016476208 @default.
- W2169176543 cites W2017366622 @default.
- W2169176543 cites W2018083974 @default.
- W2169176543 cites W2031939800 @default.
- W2169176543 cites W2040799936 @default.
- W2169176543 cites W2053249034 @default.
- W2169176543 cites W2054316314 @default.
- W2169176543 cites W2057266151 @default.
- W2169176543 cites W2068721736 @default.
- W2169176543 cites W2071665794 @default.
- W2169176543 cites W2076086120 @default.
- W2169176543 cites W2079069831 @default.
- W2169176543 cites W2099260394 @default.
- W2169176543 cites W2102011699 @default.
- W2169176543 cites W2117139408 @default.
- W2169176543 cites W2120711134 @default.
- W2169176543 cites W2130509936 @default.
- W2169176543 cites W2155429661 @default.
- W2169176543 cites W2164358952 @default.
- W2169176543 cites W2165394378 @default.
- W2169176543 cites W2343720484 @default.
- W2169176543 cites W2911964244 @default.
- W2169176543 cites W31739655 @default.
- W2169176543 doi "https://doi.org/10.1016/j.ophtha.2012.07.005" @default.
- W2169176543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23009888" @default.
- W2169176543 hasPublicationYear "2013" @default.
- W2169176543 type Work @default.
- W2169176543 sameAs 2169176543 @default.
- W2169176543 citedByCount "70" @default.
- W2169176543 countsByYear W21691765432013 @default.
- W2169176543 countsByYear W21691765432014 @default.
- W2169176543 countsByYear W21691765432015 @default.
- W2169176543 countsByYear W21691765432016 @default.
- W2169176543 countsByYear W21691765432017 @default.
- W2169176543 countsByYear W21691765432018 @default.
- W2169176543 countsByYear W21691765432019 @default.
- W2169176543 countsByYear W21691765432020 @default.
- W2169176543 countsByYear W21691765432021 @default.
- W2169176543 countsByYear W21691765432022 @default.
- W2169176543 countsByYear W21691765432023 @default.
- W2169176543 crossrefType "journal-article" @default.
- W2169176543 hasAuthorship W2169176543A5022464374 @default.
- W2169176543 hasAuthorship W2169176543A5050519796 @default.
- W2169176543 hasAuthorship W2169176543A5057053486 @default.
- W2169176543 hasAuthorship W2169176543A5061735128 @default.
- W2169176543 hasAuthorship W2169176543A5064201883 @default.
- W2169176543 hasAuthorship W2169176543A5069488977 @default.
- W2169176543 hasAuthorship W2169176543A5072258594 @default.
- W2169176543 hasAuthorship W2169176543A5080251127 @default.
- W2169176543 hasAuthorship W2169176543A5086892556 @default.
- W2169176543 hasAuthorship W2169176543A5087613983 @default.
- W2169176543 hasBestOaLocation W21691765431 @default.
- W2169176543 hasConcept C105795698 @default.
- W2169176543 hasConcept C11413529 @default.
- W2169176543 hasConcept C118487528 @default.
- W2169176543 hasConcept C146834321 @default.
- W2169176543 hasConcept C162324750 @default.
- W2169176543 hasConcept C2778527774 @default.
- W2169176543 hasConcept C2778818243 @default.
- W2169176543 hasConcept C2780892088 @default.
- W2169176543 hasConcept C33923547 @default.
- W2169176543 hasConcept C34447519 @default.
- W2169176543 hasConcept C58471807 @default.
- W2169176543 hasConcept C71924100 @default.
- W2169176543 hasConceptScore W2169176543C105795698 @default.
- W2169176543 hasConceptScore W2169176543C11413529 @default.
- W2169176543 hasConceptScore W2169176543C118487528 @default.
- W2169176543 hasConceptScore W2169176543C146834321 @default.
- W2169176543 hasConceptScore W2169176543C162324750 @default.
- W2169176543 hasConceptScore W2169176543C2778527774 @default.
- W2169176543 hasConceptScore W2169176543C2778818243 @default.
- W2169176543 hasConceptScore W2169176543C2780892088 @default.
- W2169176543 hasConceptScore W2169176543C33923547 @default.
- W2169176543 hasConceptScore W2169176543C34447519 @default.
- W2169176543 hasConceptScore W2169176543C58471807 @default.
- W2169176543 hasConceptScore W2169176543C71924100 @default.
- W2169176543 hasIssue "1" @default.
- W2169176543 hasLocation W21691765431 @default.
- W2169176543 hasLocation W21691765432 @default.
- W2169176543 hasOpenAccess W2169176543 @default.