Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169196974> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2169196974 endingPage "63" @default.
- W2169196974 startingPage "47" @default.
- W2169196974 abstract "In this paper we present a stochastic neuralnetwork architecture, the synchronous-network acceptor, that can approximately simulate nonde terministic finite-state automata, where the precision of the approximation depends on the level of noise in the synchronous-network acceptor. This network learns to simulate finite-state automata by means of an unsupervised learning algorithm. The synchronous-network acceptor is a neurophysiologically plausible model of connected relay nuclei, or connected, coherent, collections of cortical columns. The learning algorithm is a plausible model of a column formation process or, more generally, an axon terminal segregation process. Complex self-organizing systems can be constructed as ensembles of synchronous-network acceptors. In virtue of the fact that finite-state automata can be simulated, applications of such systems can be implementations of linguistic theories, for instance parsing algorithms. However, we prefer a reductionistic, holistic approach. The approach is reductionist in that linguistic behavior is studied via its neurophysiological substrate. Our approach is holistic because we consider complete linguistic systems. These systems are called little linguistic creatures. They typically contain models of nervous sensory, motivational, and motor subsystems, and unlike in more conventional approaches in which various linguistic faculties are studied separately, we reduce the complexity of the subject by modeling simple linguistic systems. This holistic approach should in the end have the advantage of domain independence over more conventional approaches. The system of self-organizing synchronous network acceptors we present in this paper is a very simple linguistic creature for speech recognition. Its state provides the semantics of the linguistic input and the context information for the resolution of nondeterministic choices." @default.
- W2169196974 created "2016-06-24" @default.
- W2169196974 creator A5026704359 @default.
- W2169196974 creator A5030060545 @default.
- W2169196974 date "1994-12-12" @default.
- W2169196974 modified "2023-09-27" @default.
- W2169196974 title "Simple Speech Recognition with Little Linguistic Creatures" @default.
- W2169196974 hasPublicationYear "1994" @default.
- W2169196974 type Work @default.
- W2169196974 sameAs 2169196974 @default.
- W2169196974 citedByCount "0" @default.
- W2169196974 crossrefType "journal-article" @default.
- W2169196974 hasAuthorship W2169196974A5026704359 @default.
- W2169196974 hasAuthorship W2169196974A5030060545 @default.
- W2169196974 hasConcept C111472728 @default.
- W2169196974 hasConcept C111919701 @default.
- W2169196974 hasConcept C11413529 @default.
- W2169196974 hasConcept C138885662 @default.
- W2169196974 hasConcept C151319957 @default.
- W2169196974 hasConcept C154945302 @default.
- W2169196974 hasConcept C167822520 @default.
- W2169196974 hasConcept C195324797 @default.
- W2169196974 hasConcept C2780586882 @default.
- W2169196974 hasConcept C31258907 @default.
- W2169196974 hasConcept C41008148 @default.
- W2169196974 hasConcept C50644808 @default.
- W2169196974 hasConcept C80444323 @default.
- W2169196974 hasConcept C98045186 @default.
- W2169196974 hasConceptScore W2169196974C111472728 @default.
- W2169196974 hasConceptScore W2169196974C111919701 @default.
- W2169196974 hasConceptScore W2169196974C11413529 @default.
- W2169196974 hasConceptScore W2169196974C138885662 @default.
- W2169196974 hasConceptScore W2169196974C151319957 @default.
- W2169196974 hasConceptScore W2169196974C154945302 @default.
- W2169196974 hasConceptScore W2169196974C167822520 @default.
- W2169196974 hasConceptScore W2169196974C195324797 @default.
- W2169196974 hasConceptScore W2169196974C2780586882 @default.
- W2169196974 hasConceptScore W2169196974C31258907 @default.
- W2169196974 hasConceptScore W2169196974C41008148 @default.
- W2169196974 hasConceptScore W2169196974C50644808 @default.
- W2169196974 hasConceptScore W2169196974C80444323 @default.
- W2169196974 hasConceptScore W2169196974C98045186 @default.
- W2169196974 hasLocation W21691969741 @default.
- W2169196974 hasOpenAccess W2169196974 @default.
- W2169196974 hasPrimaryLocation W21691969741 @default.
- W2169196974 hasRelatedWork W1488803361 @default.
- W2169196974 hasRelatedWork W1576492779 @default.
- W2169196974 hasRelatedWork W1593665401 @default.
- W2169196974 hasRelatedWork W1969010420 @default.
- W2169196974 hasRelatedWork W1982984625 @default.
- W2169196974 hasRelatedWork W2008031717 @default.
- W2169196974 hasRelatedWork W2039814900 @default.
- W2169196974 hasRelatedWork W2103927100 @default.
- W2169196974 hasRelatedWork W2150040148 @default.
- W2169196974 hasRelatedWork W2168381781 @default.
- W2169196974 hasRelatedWork W2320570172 @default.
- W2169196974 hasRelatedWork W2476995767 @default.
- W2169196974 hasRelatedWork W268401885 @default.
- W2169196974 hasRelatedWork W2972515356 @default.
- W2169196974 hasRelatedWork W3030855683 @default.
- W2169196974 hasRelatedWork W3089114253 @default.
- W2169196974 hasRelatedWork W3153238932 @default.
- W2169196974 hasRelatedWork W3200725542 @default.
- W2169196974 hasRelatedWork W59178403 @default.
- W2169196974 hasRelatedWork W851557577 @default.
- W2169196974 isParatext "false" @default.
- W2169196974 isRetracted "false" @default.
- W2169196974 magId "2169196974" @default.
- W2169196974 workType "article" @default.