Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169214521> ?p ?o ?g. }
- W2169214521 endingPage "32369" @default.
- W2169214521 startingPage "32357" @default.
- W2169214521 abstract "Cell entry of hepatitis C virus (HCV) is strikingly linked to lipoproteins and their receptors. Particularly, high density lipoprotein (HDL) enhances infectivity of HCV by involving the lipid-transfer function of the scavenger receptor BI, a receptor for both HDL and HCV. Here, we demonstrate that apoC-I, an exchangeable apolipoprotein that predominantly resides in HDL, specifically enhances HCVcc and HCVpp infectivity and increases the fusion rates between viral and target membranes via a direct interaction with the HCV surface. We identify the hypervariable region 1, located at the N terminus of the HCV E2 glycoprotein, as an essential viral component that modulates apoC-I-mediated enhancement of HCV fusion properties. The affinity of apoC-I for the HCV membrane may predispose it for fusion with a target membrane via alterations of its outer phospholipid layer. Conversely, we found that excess apoC-I provided as lipoprotein-free protein induces the disruption of the HCV membrane and subsequent loss of infectivity. Furthermore, our data indicate that HDL neither interacts nor spontaneously exchanges apoC-I with HCV virions. Because apoC-I is not present in serum as a lipoprotein-free form, our results suggest that HDL-embedded apoC-I could be released from the lipoprotein particle through a fine-tuned mechanism regulated via a triple interplay between hypervariable region 1, HDL, and scavenger receptor BI, resulting in optimal apoC-I recruitment on the viral membrane. These results provide the first description of a host serum factor helping the fusion process of an enveloped virus. Cell entry of hepatitis C virus (HCV) is strikingly linked to lipoproteins and their receptors. Particularly, high density lipoprotein (HDL) enhances infectivity of HCV by involving the lipid-transfer function of the scavenger receptor BI, a receptor for both HDL and HCV. Here, we demonstrate that apoC-I, an exchangeable apolipoprotein that predominantly resides in HDL, specifically enhances HCVcc and HCVpp infectivity and increases the fusion rates between viral and target membranes via a direct interaction with the HCV surface. We identify the hypervariable region 1, located at the N terminus of the HCV E2 glycoprotein, as an essential viral component that modulates apoC-I-mediated enhancement of HCV fusion properties. The affinity of apoC-I for the HCV membrane may predispose it for fusion with a target membrane via alterations of its outer phospholipid layer. Conversely, we found that excess apoC-I provided as lipoprotein-free protein induces the disruption of the HCV membrane and subsequent loss of infectivity. Furthermore, our data indicate that HDL neither interacts nor spontaneously exchanges apoC-I with HCV virions. Because apoC-I is not present in serum as a lipoprotein-free form, our results suggest that HDL-embedded apoC-I could be released from the lipoprotein particle through a fine-tuned mechanism regulated via a triple interplay between hypervariable region 1, HDL, and scavenger receptor BI, resulting in optimal apoC-I recruitment on the viral membrane. These results provide the first description of a host serum factor helping the fusion process of an enveloped virus. With an estimated 170 million infected individuals, hepatitis C virus (HCV) 4The abbreviations used are: HCV, hepatitis C virus; SR-BI, scavenger receptor B-I; HDL, high density lipoprotein; VLDL, very low density lipoprotein; HVR1, hypervariable region-1; HA, hemagglutinin; R18, octadecylrhodamine B chloride; HIV, human immunodeficiency virus; mAb, monoclonal antibody; N-Rh-PE, N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine; N-NBD-PE, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine; CHO, Chinese hamster ovary; PBS, phosphate-buffered saline; SPR, surface plasmon resonance; RT, reverse transcription; MLV, murine leukemia virus; sE2, soluble E2. has a major impact on public health (2Chisari F.V. Nature. 2005; 436: 930-932Crossref PubMed Scopus (195) Google Scholar). HCV is an enveloped, positive-stranded RNA virus of the Flaviviridae family. Its genome encodes a single polyprotein processed by viral and cellular proteases into three structural (core, E1 and E2 glycoproteins) and seven non-structural proteins (3Lindenbach B.D. Kim C.M. Flaviviridae: The Viruses and Their Replication. Lippincott Williams & Wilkins, Philadelphia, PA2001: 991-1042Google Scholar, 4Penin F. Kim J. Rey F.A. Moradpour D. Pawlotsky J.M. Hepatology. 2004; 39: 5-19Crossref PubMed Scopus (492) Google Scholar). For a long time the study of HCV cell entry has remained limited because the ex vivo characterization of HCV derived from plasma has proven extremely difficult. This is due in large part to the low infectivity of the virus in cultures of primary hepatocytes, to its high genetic heterogeneity, and to its association through different forms with lipoproteins. Thus, to overcome these severe limitations toward the molecular characterization of HCV infection, several surrogate assays have been developed. Two relevant and complementary in vitro cell entry assays consist of cell culture-grown genuine HCV (HCVcc) derived from a fulminant hepatitis C, JFH-1 (5Lindenbach B.D. Kim M.J. Syder A.J. Wolk B. Tellinghuisen T.L. Liu C.C. Maruyama T. Hynes R.O. Burton D.R. McKeating J.A. Rice C.M. Science. 2005; 309: 623-626Crossref PubMed Scopus (1908) Google Scholar, 6Wakita T. Kim T. Kato T. Date T. Miyamoto M. Zhao Z. Murthy K. Habermann A. Krausslich H.G. Mizokami M. Bartenschlager R. Liang T.J. Nat. Med. 2005; 11: 791-796Crossref PubMed Scopus (2351) Google Scholar, 7Zhong J. Kim P. Cheng G. Kapadia S. Kato T. Burton D.R. Wieland S.F. Uprichard S.L. Wakita T. Chisari F.V. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 9294-9299Crossref PubMed Scopus (1482) Google Scholar), and of HCV pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins, which are particularly amenable to mutagenesis analysis (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar, 9Drummer H.E. Kim A. Poumbourios P. FEBS Lett. 2003; 546: 385-390Crossref PubMed Scopus (165) Google Scholar, 10Hsu M. Kim J. Flint M. Logvinoff C. Cheng-Mayer C. Rice C.M. McKeating J.A. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 7271-7276Crossref PubMed Scopus (679) Google Scholar). Although HCVcc further permit investigation of the late infection steps, HCVpp, which can be produced in non-hepatic cells that can be readily complemented with hepatic factors, offers a particularly flexible plate form to study the structure/function relationship of HCV glycoproteins both in cell culture and in liposome fusion assays in vitro (11Lavillette D. Kim B. Nourrisson D. Verney G. Cosset F.L. Penin F. Pecheur E.I. J. Biol. Chem. 2006; 281: 3909-3917Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar). Thus, both HCVcc and HCVpp infection assays reproduce some cell entry features of native HCV and allow a precise dissection of the cellular and viral factors involved in the early events of HCV infection (for review, see Refs. 12Barth H. Kim T.J. Baumert T.F. Hepatology. 2006; 44: 527-535Crossref PubMed Scopus (109) Google Scholar, 13Bartosch B. Kim F.-L. Virology. 2006; 348: 1-12Crossref PubMed Scopus (131) Google Scholar, 14Cocquerel L. Kim C. Dubuisson J. J. Gen. Virol. 2006; 87: 1075-1084Crossref PubMed Scopus (155) Google Scholar). The viral surface glycoproteins, E1E2, and their receptors mediate the cell entry processes of HCV. At least three receptors for HCV E2 have been identified that mediate concentration, binding, and cell entry of viral particles. They include glycosaminoglycans, the CD81 tetraspanin, and the scavenger receptor B-I (SR-BI), a major receptor of high density lipoprotein (HDL). Using HCVpp and HCVcc infection assays as well as in vitro membrane fusion assays, HCV entry has been shown to occur in a pH-dependent manner (10Hsu M. Kim J. Flint M. Logvinoff C. Cheng-Mayer C. Rice C.M. McKeating J.A. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 7271-7276Crossref PubMed Scopus (679) Google Scholar, 11Lavillette D. Kim B. Nourrisson D. Verney G. Cosset F.L. Penin F. Pecheur E.I. J. Biol. Chem. 2006; 281: 3909-3917Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 15Bartosch B. Kim A. Granier C. Goujon C. Dubuisson J. Pascale S. Scarselli E. Cortese R. Nicosia A. Cosset F.-L. J. Biol. Chem. 2003; 278: 41624-41630Abstract Full Text Full Text PDF PubMed Scopus (500) Google Scholar, 16Lavillette D. Kim A.W. Voisset C. Donot P. Bartosch B. Bain C. Patel A.H. Dubuisson J. Ball J.K. Cosset F.-L. Hepatology. 2005; 41: 265-274Crossref PubMed Scopus (225) Google Scholar, 17Tscherne D.M. Kim C.T. Evans M.J. Lindenbach B.D. McKeating J.A. Rice C.M. J. Virol. 2006; 80: 1734-1741Crossref PubMed Scopus (319) Google Scholar) through endocytosis of the viral particles (18Blanchard E. Kim S. Goueslain L. Wakita T. Dubuisson J. Wychowski C. Rouille Y. J. Virol. 2006; 80: 6964-6972Crossref PubMed Scopus (425) Google Scholar, 19Meertens L. Kim C. Dragic T. J. Virol. 2006; 80: 11571-11578Crossref PubMed Scopus (225) Google Scholar). As for other Flaviviridae (20Kielian M. Kim F.A. Nat. Rev. Microbiol. 2006; 4: 67-76Crossref PubMed Scopus (419) Google Scholar), the low endosomal pH may induce conformational rearrangement of HCV glycoproteins, leading to fusion of the viral membrane with that of the endosome. The steps after the initial encounter of the HCV glycoproteins with the target cell surface remain ill-defined. Glycosaminoglycans such as highly sulfated heparan sulfate allow viral particles to adhere to target cells before specific receptors induce cell entry (21Barth H. Kim E.K. Zhang F. Linhardt R.J. Depla E. Boson B. Cosset F.L. Patel A.H. Blum H.E. Baumert T.F. J. Virol. 2006; 80: 10579-10590Crossref PubMed Scopus (153) Google Scholar). As shown by genetic complementation, down-regulation, and blocking experiments (5Lindenbach B.D. Kim M.J. Syder A.J. Wolk B. Tellinghuisen T.L. Liu C.C. Maruyama T. Hynes R.O. Burton D.R. McKeating J.A. Rice C.M. Science. 2005; 309: 623-626Crossref PubMed Scopus (1908) Google Scholar, 6Wakita T. Kim T. Kato T. Date T. Miyamoto M. Zhao Z. Murthy K. Habermann A. Krausslich H.G. Mizokami M. Bartenschlager R. Liang T.J. Nat. Med. 2005; 11: 791-796Crossref PubMed Scopus (2351) Google Scholar, 10Hsu M. Kim J. Flint M. Logvinoff C. Cheng-Mayer C. Rice C.M. McKeating J.A. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 7271-7276Crossref PubMed Scopus (679) Google Scholar, 16Lavillette D. Kim A.W. Voisset C. Donot P. Bartosch B. Bain C. Patel A.H. Dubuisson J. Ball J.K. Cosset F.-L. Hepatology. 2005; 41: 265-274Crossref PubMed Scopus (225) Google Scholar, 22Barth H. Kim C. Adah M.I. Zhang F. Linhardt R.J. Toyoda H. Kinoshita-Toyoda A. Toida T. Van Kuppevelt T.H. Depla E. Von Weizsacker F. Blum H.E. Baumert T.F. J. Biol. Chem. 2003; 278: 41003-41012Abstract Full Text Full Text PDF PubMed Scopus (391) Google Scholar, 23Cormier E.G. Kim F. Kajumo F. Durso R.J. Gardner J.P. Dragic T. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 7270-7274Crossref PubMed Scopus (244) Google Scholar, 24McKeating J.A. Kim L.Q. Logvinoff C. Flint M. Zhang J. Yu J. Butera D. Ho D.D. Dustin L.B. Rice C.M. Balfe P. J. Virol. 2004; 78: 8496-8505Crossref PubMed Scopus (138) Google Scholar, 25Zhang J. Kim G. Higginbottom A. Monk P. Rice C.M. McKeating J.A. J. Virol. 2004; 78: 1448-1455Crossref PubMed Scopus (302) Google Scholar), CD81 appears an essential receptor in both HCVpp and HCVcc infection assays, yet its role in cell entry remains elusive. Through its down-regulation and blocking, SR-BI has been shown as an important cell entry factor that can boost cell entry of HCVpp and HCVcc cooperatively with CD81 (15Bartosch B. Kim A. Granier C. Goujon C. Dubuisson J. Pascale S. Scarselli E. Cortese R. Nicosia A. Cosset F.-L. J. Biol. Chem. 2003; 278: 41624-41630Abstract Full Text Full Text PDF PubMed Scopus (500) Google Scholar, 16Lavillette D. Kim A.W. Voisset C. Donot P. Bartosch B. Bain C. Patel A.H. Dubuisson J. Ball J.K. Cosset F.-L. Hepatology. 2005; 41: 265-274Crossref PubMed Scopus (225) Google Scholar, 26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 27Kapadia S.B. Kim H. Baumert T. McKeating J.A. Chisari F.V. J. Virol. 2007; 81: 374-383Crossref PubMed Scopus (210) Google Scholar). Additional host components contribute to cell entry, as recently highlighted by the finding that claudin-1, a tight junction protein, is required for HCV infection of human hepatoma cell lines (28Evans M.J. Kim T. Tscherne D.M. Syder A.J. Panis M. Wolk B. Hatziioannou T. McKeating J.A. Bieniasz P.D. Rice C.M. Nature. 2007; 446: 801-805Crossref PubMed Scopus (967) Google Scholar). The involvement of SR-BI during cell entry of HCV seems closely related to its physiological function and to its natural ligands. SR-BI mediates binding and lipid transfer from different classes of lipoproteins (29Krieger M. J. Clin. Investig. 2001; 108: 793-797Crossref PubMed Google Scholar), particularly HDL, accounting for its multiple functions in cholesterol metabolism such as removal of peripheral unesterified cholesterol, steroidogenesis, and bile acid synthesis and secretion. SR-BI mediates direct binding of E2 (30Heo T.H. Kim S.M. Bartosch B. Cosset F.L. Kang C.Y. Virus Res. 2006; 121: 58-64Crossref PubMed Scopus (20) Google Scholar, 31Scarselli E. Kim H. Cerino R. Roccasecca R. Acali S. Filocamo G. Traboni C. Nicosia A. Cortese R. Vitelli A. EMBO J. 2002; 21: 5017-5025Crossref PubMed Scopus (928) Google Scholar) and, as a multiligand lipoprotein receptor, can also induce binding of HCV associated to β-lipoproteins (32Maillard P. Kim T. Andreo U. Moreau M. Chapman J. Budkowska A. FASEB J. 2006; 20: 735-737Crossref PubMed Scopus (127) Google Scholar). Intriguingly, we and others have demonstrated that HDL enhances infectivity of HCVpp and HCVcc (26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 33Bartosch B. Kim G. Dreux M. Donot P. Morice Y. Penin F. Pawlotsky J.-M. Lavillette D. Cosset F.-L. J. Virol. 2005; 79: 8217-8229Crossref PubMed Scopus (241) Google Scholar, 34Catanese M.T. Kim R. von Hahn T. Moreau M. Huby T. Paonessa G. Santini C. Luzzago A. Rice C.M. Cortese R. Vitelli A. Nicosia A. J. Virol. 2007; 81: 8063-8071Crossref PubMed Scopus (121) Google Scholar, 35Meunier J.C. Kim R.E. Faulk K. Zhao M. Bartosch B. Alter H. Emerson S.U. Cosset F.L. Purcell R.H. Bukh J. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 4560-4565Crossref PubMed Scopus (221) Google Scholar, 36Voisset C. Kim N. Blanchard E. Op De Beeck A. Dubuisson J. Vu-Dac N. J. Biol. Chem. 2005; 280: 7793-7799Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar, 37Voisset C. Kim A. Horellou P. Dreux M. Gustot T. Duverlie G. Cosset F.L. Vu-Dac N. Dubuisson J. J. Gen. Virol. 2006; 87: 2577-2581Crossref PubMed Scopus (80) Google Scholar). HDL-mediated enhancement of infection does not occur through a direct binding of HDL to HCV particles but, rather, involves the lipid-transfer function of SR-BI (26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 33Bartosch B. Kim G. Dreux M. Donot P. Morice Y. Penin F. Pawlotsky J.-M. Lavillette D. Cosset F.-L. J. Virol. 2005; 79: 8217-8229Crossref PubMed Scopus (241) Google Scholar, 36Voisset C. Kim N. Blanchard E. Op De Beeck A. Dubuisson J. Vu-Dac N. J. Biol. Chem. 2005; 280: 7793-7799Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar). This original mechanism is controlled by the HCV glycoproteins, and more particularly by conserved residues of the hypervariable region-1 (HVR1) (33Bartosch B. Kim G. Dreux M. Donot P. Morice Y. Penin F. Pawlotsky J.-M. Lavillette D. Cosset F.-L. J. Virol. 2005; 79: 8217-8229Crossref PubMed Scopus (241) Google Scholar, 36Voisset C. Kim N. Blanchard E. Op De Beeck A. Dubuisson J. Vu-Dac N. J. Biol. Chem. 2005; 280: 7793-7799Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar), a 27-amino acid peptide located at the N terminus of E2. As SR-BI-mediated lipid transfer from HDL locally increases cholesterol content of the lipid membrane (38Parathath S. Kim M.A. Rieger R.A. Klein S.M. Abumrad N.A. De La Llera-Moya M. Iden C.R. Rothblat G.H. Williams D.L. J. Biol. Chem. 2004; 279: 41310-41318Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar, 39Kellner-Weibel G. Kim M. Connelly M.A. Stoudt G. Christian A.E. Haynes M.P. Williams D.L. Rothblat G.H. Biochemistry. 2000; 39: 221-229Crossref PubMed Scopus (130) Google Scholar), it may enhance internalization, membrane rearrangement of components of the HCV receptor complex, and/or membrane fusion of HCV (11Lavillette D. Kim B. Nourrisson D. Verney G. Cosset F.L. Penin F. Pecheur E.I. J. Biol. Chem. 2006; 281: 3909-3917Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 27Kapadia S.B. Kim H. Baumert T. McKeating J.A. Chisari F.V. J. Virol. 2007; 81: 374-383Crossref PubMed Scopus (210) Google Scholar). On the other hand, an essential component of HDL that seems responsible for infection enhancement is the apolipoprotein C-I (apoC-I) (35Meunier J.C. Kim R.E. Faulk K. Zhao M. Bartosch B. Alter H. Emerson S.U. Cosset F.L. Purcell R.H. Bukh J. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 4560-4565Crossref PubMed Scopus (221) Google Scholar). ApoC-I is a small plasma protein (57 amino-acids) composed of two amphipathic α-helices. It is the smallest of the exchangeable apolipoproteins (A-I, A-II, A-IV, C-I, C-II, C-III, and E) and circulates in the bloodstream associated with HDL, mainly and with very low density lipoprotein (VLDL) and chylomicron particles (40Cohn J.S. Kim M. Batal R. Jacques H. Veilleux L. Rodriguez C. Bernier L. Mamer O. Davignon J. J. Lipid Res. 2002; 43: 1680-1687Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar, 41Malmendier C.L. Kim J.F. Grutman G.A. Delcroix C. Atherosclerosis. 1986; 62: 167-172Abstract Full Text PDF PubMed Google Scholar). Its capacity to interact with lipid surfaces underlies a number of its functional properties and its important role in regulating plasma lipoprotein metabolism (42Jong M.C. Kim M.H. Havekes L.M. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 472-484Crossref PubMed Google Scholar, 43Shachter N.S. Curr. Opin. Lipidol. 2001; 12: 297-304Crossref PubMed Scopus (240) Google Scholar). Here we have investigated the mechanisms underlying the enhancement of the early steps of HCV infection by HDL. We demonstrate that apoC-I increases HCVcc and HCVpp membrane fusion via a direct and specific interaction with HCV particles. We show that the HVR1 region is an essential viral component that modulates this interaction and enhancement of HCV fusogenicity. Our data indicate that lipoprotein-associated apoC-I induces HCV infection enhancement through a mechanism that is regulated via a triple interplay between HVR1, HDL, and SR-BI, which results in optimal apoC-I recruitment on the viral membrane. These results provide the first description of a host-soluble factor helping the fusion process of an enveloped virus. Expression Constructs and Production of HCVpp—Expression vectors for the E1E2 glycoproteins of HCV strain H77 (AF009606), for the HVR1 deletion mutant (ΔG384-N411), and for the HVR1 point mutants were described previously (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar, 15Bartosch B. Kim A. Granier C. Goujon C. Dubuisson J. Pascale S. Scarselli E. Cortese R. Nicosia A. Cosset F.-L. J. Biol. Chem. 2003; 278: 41624-41630Abstract Full Text Full Text PDF PubMed Scopus (500) Google Scholar, 33Bartosch B. Kim G. Dreux M. Donot P. Morice Y. Penin F. Pawlotsky J.-M. Lavillette D. Cosset F.-L. J. Virol. 2005; 79: 8217-8229Crossref PubMed Scopus (241) Google Scholar). The murine leukemia virus (MLV) packaging and green fluorescent protein transfer vectors and the phCMV-RD114 expression plasmid encoding glycoproteins of cat endogenous virus RD114 were described elsewhere (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar). The phCMV-VSV-G, phCMV-MLV-A, and phCMV-HA expression plasmids encoding the glycoprotein of vesicular stomatitis virus, amphotropic MLV, and an avian influenza virus hemagglutinin (HA H7N1) respectively, were described previously (44Sandrin V. Kim B. Salmon P. Gay W. Nègre D. LeGrand R. Trono D. Cosset F.-L. Blood. 2002; 100: 823-832Crossref PubMed Scopus (237) Google Scholar). The phCMV-712-HIV expression plasmids encoding the glycoprotein of human immunodeficient virus (HIV) was described previously (45Wilk T. Kim T. Bosch V. Virology. 1992; 189: 167-177Crossref PubMed Scopus (138) Google Scholar). Viral pseudo-particles named HCVpp, RD114pp, VSV-Gpp MLVpp, HApp, and HIVpp harbored the glycoproteins of HCV, RD114, VSV, influenza virus, and HIV. They were produced (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar) by transfection in 293T cells of vectors encoding viral glycoproteins, packaging proteins, and green fluorescent protein-transfer vector. Before harvesting viral particle-containing supernatants, producer cells were incubated in Dulbecco's modified Eagle's medium containing 0.1% fetal calf serum for 24 h. Viral particle-containing supernatants were used to infect Huh-7 hepatoma cells directly or upon purification by ultracentrifugation through a 20% sucrose cushion. Expression Constructs and Production of HCVcc—The pFK-venus-Jc1 is a chimeric J6CF/JFH1 HCV genome consisting of codons 1-846, derived from J6CF (AF177036) and codons 847-3033, derived from JFH1 (AB047639) (46Koutsoudakis G. Kim E. Kallis S. Bartenschlager R. Pietschmann T. J. Virol. 2007; 81: 588-598Crossref PubMed Scopus (181) Google Scholar, 47Pietschmann T. Kim A. Koutsoudakis G. Shavinskaya A. Kallis S. Steinmann E. Abid K. Negro F. Dreux M. Cosset F.L. Bartenschlager R. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 7408-7413Crossref PubMed Scopus (602) Google Scholar). HCVcc were produced by electroporation of Huh7-Lunet cells (6Wakita T. Kim T. Kato T. Date T. Miyamoto M. Zhao Z. Murthy K. Habermann A. Krausslich H.G. Mizokami M. Bartenschlager R. Liang T.J. Nat. Med. 2005; 11: 791-796Crossref PubMed Scopus (2351) Google Scholar, 47Pietschmann T. Kim A. Koutsoudakis G. Shavinskaya A. Kallis S. Steinmann E. Abid K. Negro F. Dreux M. Cosset F.L. Bartenschlager R. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 7408-7413Crossref PubMed Scopus (602) Google Scholar) in a L3 laboratory according to European safety regulations. 24 h before harvesting viral particle-containing supernatants, electroporated cells were incubated in Dulbecco’s modified Eagle’s medium containing 2% lipoprotein-deficient fetal bovine serum (Sigma). Viral particle-containing supernatants were used directly in infection assays using Huh7-Lunet target cells or after purification as described above for HCVpp. Reagents and Antibodies—The HDL (Calbiochem) preparation (density 1.063-1.2 mg/ml) contained a mixture of HDL2 and HDL3. Purified apolipoproteins were purchased from Athens Research and Technology (Athens, GA). The BLT-4 SR-BI lipid transfer inhibitor (48Nieland T.J. Kim A. Fitzgerald M.L. Maliga Z. Zannis V.I. Kirchhausen T. Krieger M. J. Lipid Res. 2004; 45: 1256-1265Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar) was obtained from Chembridge. The rabbit anti-apoC-I antibody was from Biodesign. The 9/27 (10Hsu M. Kim J. Flint M. Logvinoff C. Cheng-Mayer C. Rice C.M. McKeating J.A. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 7271-7276Crossref PubMed Scopus (679) Google Scholar), AP33 (49Owsianka A. Kim R.F. Loomis-Price L.D. McKeating J.A. Patel A.H. J. Gen. Virol. 2001; 82: 1877-1883Crossref PubMed Google Scholar), H53 (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar, 50Deleersnyder V. Kim A. Wychowski C. Blight K. Xu J. Hahn Y.S. Rice C.M. Dubuisson J. J. Virol. 1997; 71: 697-704Crossref PubMed Google Scholar), and the E2mAb-1 5C. Granier, G. Verneg, and F.-L. Cosset, unpublished data. are E2-specific mAbs. A4 (51Dubuisson J. Kim H.H. Cheung R.C. Greenberg H.B. Russell D.G. Rice C.M. J. Virol. 1994; 68: 6147-6160Crossref PubMed Google Scholar) is an E1-specific mAb. The 83A25 mAb (a kind gift of L. Evans), 2F5 mAb (NIH AIDS Research and Reference Reagent Program), and RD114 SU goat antiserum (ViroMed Biosafety Laboratories) are antibodies against MLV, HIV, and RD114 envelope glycoproteins, respectively. Lectin from Galanthus nivalis was obtained from Sigma. The recombinant CD81-LEL fragment (amino acids 112-202) and a truncated soluble form of E2 glycoprotein (sE2) (amino-acids 384-664) were fused to a His tag, produced in cells, and purified on nickel nitrilotriacetic acid resin (Qiagen). The protein A and G coupled to Sepharose beads were purchased from Amersham Biosciences. Phosphatidylcholine from egg yolk (99% pure), cholesterol (99% pure), and Triton X-100 were from Sigma. Phospholipid oxidation was routinely checked by spectrophotometry. Octadecylrhodamine B chloride (R18) was from Molecular Probes, and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE) and N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine (N-NBD-PE) were purchased from Avanti Polar Lipids. Infection Assays—For infection assays with HCVpp and HCVcc, Huh-7 and Huh-7-Lunet cells were, respectively, seeded 24 h before inoculation (6Wakita T. Kim T. Kato T. Date T. Miyamoto M. Zhao Z. Murthy K. Habermann A. Krausslich H.G. Mizokami M. Bartenschlager R. Liang T.J. Nat. Med. 2005; 11: 791-796Crossref PubMed Scopus (2351) Google Scholar, 8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar). 2 h before infection target cells were preincubated in Dulbecco’s modified Eagle’s medium containing 0.1% fetal calf serum. Medium was then removed, and dilutions of viral supernatants and various compounds were added to the cells as indicated. After 4 h, supernatants were removed, and the infected cells were kept in regular medium (Dulbecco’s modified Eagle’s medium, 10% fetal calf serum) for 72 h before analysis. The infectious titers were deduced from the percentage of green fluorescent protein-positive cells, as determined by fluorescence-activated cell sorter analysis (8Bartosch B. Kim J. Cosset F.L. J. Exp. Med. 2003; 197: 633-642Crossref PubMed Scopus (926) Google Scholar). Infections with HCVpp were controlled by pseudo-particles devoid of E1E2 glycoproteins, which resulted in background titers below 5 × 102 infectious units/ml. Binding Assays—Binding of HCVpp was performed as previously described for HCVpp or for other types of pseudo-particles (26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 52Lavillette D. Kim B. Russell S. Cosset F.-L. J. Virol. 2001; 75: 3685-3695Crossref PubMed Scopus (68) Google Scholar, 53Lavillette D. Kim E.-I. Donot P. Fresquet J. Molle J. Corbau R. Dreux M. Penin F. Cosset F.-L. J. Virol. 2007; 81: 8752-8765Crossref PubMed Scopus (147) Google Scholar). Briefly, 50 μl of virus particles purified on a 20% sucrose cushion were incubated with 106 CHO cells expressing SR-B1 and/or CD81 or Huh-7 cells in the presence of 0.1% sodium azide for 1 h. Cells were then washed twice with PBFA (PBS, 2% fetal bovine serum, and 0.1% sodium azide) and incubated with the H53 anti-HCV-E2 (40 μg/ml) or the A4 anti-HCV-E1 mAbs (40 μg/ml) for 1 h at 4 °C. After two washes, cells were incubated with a goat anti-mouse-allophycocyanine antibody (Jackson Immunoresearch) diluted in PBFA (5 μg/ml) for 45 min at 4 °C. Fluorescence of living 10,000 cells was determined by fluorescence-activated cell sorter analysis in the FL4-H channel. Surface Plasmon Resonance (SPR) Binding Assays—Biomolecular interactions were studied using a BIAcore-3000 instrument (BIAcore AB, Uppsala, Sweden). Purified apoC-I (200 μg/ml in 10 mm acetate buffer, pH 4) was covalently immobilized via its primary amino groups to the dextran matrix of a CM4 sensor chip (amine coupling kit, BIAcore AB) at a flow rate of 5 μl/min. Activation and blocking steps were performed as described previously (26Dreux M. Kim T. Granier C. Voisset C. Ricard-Blum S. Mangeot P.E. Keck Z. Foung S. Vu-Dac N. Dubuisson J. Bartenschlager R. Lavillette D. Cosset F.-L. J. Biol. Chem. 2006; 281: 18285-18295Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar, 54Ricard-Blum S. Kim S. Font B. Moali C. Eichenberger D. Farjanel J. Burchardt E.R. van der Rest M. Kessler E. Hulmes D.J. J. Biol. Chem. 2002; 277: 33864-33869Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar). A control flow cell was prepared according to the same procedure by omitting apoC-I in the coupling buffer. It was" @default.
- W2169214521 created "2016-06-24" @default.
- W2169214521 creator A5006682801 @default.
- W2169214521 creator A5029202027 @default.
- W2169214521 creator A5032903400 @default.
- W2169214521 creator A5044847522 @default.
- W2169214521 creator A5055191235 @default.
- W2169214521 creator A5055609461 @default.
- W2169214521 creator A5066909857 @default.
- W2169214521 creator A5081056114 @default.
- W2169214521 date "2007-11-01" @default.
- W2169214521 modified "2023-10-18" @default.
- W2169214521 title "The Exchangeable Apolipoprotein ApoC-I Promotes Membrane Fusion of Hepatitis C Virus" @default.
- W2169214521 cites W1528872128 @default.
- W2169214521 cites W1551342273 @default.
- W2169214521 cites W1635062911 @default.
- W2169214521 cites W1732481302 @default.
- W2169214521 cites W1918960237 @default.
- W2169214521 cites W1929220997 @default.
- W2169214521 cites W1964786592 @default.
- W2169214521 cites W1966616903 @default.
- W2169214521 cites W1966643507 @default.
- W2169214521 cites W1968563729 @default.
- W2169214521 cites W1972695494 @default.
- W2169214521 cites W1975423158 @default.
- W2169214521 cites W1976598372 @default.
- W2169214521 cites W1979003966 @default.
- W2169214521 cites W1981920188 @default.
- W2169214521 cites W1984679573 @default.
- W2169214521 cites W1988919271 @default.
- W2169214521 cites W1993690048 @default.
- W2169214521 cites W1995590649 @default.
- W2169214521 cites W2001413253 @default.
- W2169214521 cites W2001771411 @default.
- W2169214521 cites W2003579943 @default.
- W2169214521 cites W2003897459 @default.
- W2169214521 cites W2012420380 @default.
- W2169214521 cites W2013348589 @default.
- W2169214521 cites W2015489330 @default.
- W2169214521 cites W2022557944 @default.
- W2169214521 cites W2023645777 @default.
- W2169214521 cites W2024764884 @default.
- W2169214521 cites W2025203953 @default.
- W2169214521 cites W2026847863 @default.
- W2169214521 cites W2029846939 @default.
- W2169214521 cites W2030371794 @default.
- W2169214521 cites W2030464734 @default.
- W2169214521 cites W2032274963 @default.
- W2169214521 cites W2032482278 @default.
- W2169214521 cites W2036306822 @default.
- W2169214521 cites W2037266068 @default.
- W2169214521 cites W2039278431 @default.
- W2169214521 cites W2039514634 @default.
- W2169214521 cites W2042994480 @default.
- W2169214521 cites W2044193462 @default.
- W2169214521 cites W2049107903 @default.
- W2169214521 cites W2049188692 @default.
- W2169214521 cites W2059010078 @default.
- W2169214521 cites W2060483294 @default.
- W2169214521 cites W2062741582 @default.
- W2169214521 cites W2067348020 @default.
- W2169214521 cites W2074685112 @default.
- W2169214521 cites W2075147482 @default.
- W2169214521 cites W2076955144 @default.
- W2169214521 cites W2083869151 @default.
- W2169214521 cites W2086068563 @default.
- W2169214521 cites W2090225897 @default.
- W2169214521 cites W2091001172 @default.
- W2169214521 cites W2093625698 @default.
- W2169214521 cites W2094733152 @default.
- W2169214521 cites W2095153977 @default.
- W2169214521 cites W2095294727 @default.
- W2169214521 cites W2096432979 @default.
- W2169214521 cites W2103691132 @default.
- W2169214521 cites W2103789511 @default.
- W2169214521 cites W2106399441 @default.
- W2169214521 cites W2108494941 @default.
- W2169214521 cites W2109514681 @default.
- W2169214521 cites W2110842901 @default.
- W2169214521 cites W2112936117 @default.
- W2169214521 cites W2118320694 @default.
- W2169214521 cites W2120925998 @default.
- W2169214521 cites W2128231644 @default.
- W2169214521 cites W2128890343 @default.
- W2169214521 cites W2129729109 @default.
- W2169214521 cites W2129810176 @default.
- W2169214521 cites W2130661443 @default.
- W2169214521 cites W2133762937 @default.
- W2169214521 cites W2134181802 @default.
- W2169214521 cites W2135846958 @default.
- W2169214521 cites W2137984149 @default.
- W2169214521 cites W2139731250 @default.
- W2169214521 cites W2140799443 @default.
- W2169214521 cites W2141398361 @default.
- W2169214521 cites W2141626800 @default.
- W2169214521 cites W2144892927 @default.
- W2169214521 cites W2145254117 @default.
- W2169214521 cites W2145943989 @default.