Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169292608> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2169292608 endingPage "7209" @default.
- W2169292608 startingPage "7199" @default.
- W2169292608 abstract "In Taiwan, most industries are of small and medium scale, and there are limited resources for educational training. Increasing the quality of personnel by cultivating talents for the future becomes an extremely important issue. With the growth of firms and the increase in their needs, the database is also growing. We should therefore determine how to recognize and extract the useful information contained in this database in order to apply it in such a way that assists companies in meeting their increasing and changing needs. This research collects data of personnel educational training in China Motor Corporation by cluster analysis, decision tree algorithm and back-propagation neural networks for mining analysis and classification. Based on the algorithm classification result, we finally propose the demand model suitable for educational training in other related industries. The research is expected to explore how to maximize results through planning the courses and the personnel's participation in the training. We try to determine the key factors essential to the success of educational training. Once identified, this information can then serve as the basis for other firms' future planning of educational training strategies with regard to innovation and breakthrough." @default.
- W2169292608 created "2016-06-24" @default.
- W2169292608 creator A5003797955 @default.
- W2169292608 creator A5014911316 @default.
- W2169292608 creator A5061100277 @default.
- W2169292608 creator A5084745847 @default.
- W2169292608 date "2009-04-01" @default.
- W2169292608 modified "2023-09-27" @default.
- W2169292608 title "Planning of educational training courses by data mining: Using China Motor Corporation as an example" @default.
- W2169292608 cites W1977592608 @default.
- W2169292608 cites W1980527197 @default.
- W2169292608 cites W1984785057 @default.
- W2169292608 cites W2041432213 @default.
- W2169292608 cites W2068803497 @default.
- W2169292608 cites W2076889153 @default.
- W2169292608 cites W2077378268 @default.
- W2169292608 cites W2091957691 @default.
- W2169292608 doi "https://doi.org/10.1016/j.eswa.2008.09.009" @default.
- W2169292608 hasPublicationYear "2009" @default.
- W2169292608 type Work @default.
- W2169292608 sameAs 2169292608 @default.
- W2169292608 citedByCount "20" @default.
- W2169292608 countsByYear W21692926082012 @default.
- W2169292608 countsByYear W21692926082013 @default.
- W2169292608 countsByYear W21692926082014 @default.
- W2169292608 countsByYear W21692926082015 @default.
- W2169292608 countsByYear W21692926082016 @default.
- W2169292608 countsByYear W21692926082017 @default.
- W2169292608 countsByYear W21692926082018 @default.
- W2169292608 countsByYear W21692926082019 @default.
- W2169292608 countsByYear W21692926082021 @default.
- W2169292608 countsByYear W21692926082022 @default.
- W2169292608 countsByYear W21692926082023 @default.
- W2169292608 crossrefType "journal-article" @default.
- W2169292608 hasAuthorship W2169292608A5003797955 @default.
- W2169292608 hasAuthorship W2169292608A5014911316 @default.
- W2169292608 hasAuthorship W2169292608A5061100277 @default.
- W2169292608 hasAuthorship W2169292608A5084745847 @default.
- W2169292608 hasConcept C10138342 @default.
- W2169292608 hasConcept C110354214 @default.
- W2169292608 hasConcept C119857082 @default.
- W2169292608 hasConcept C121332964 @default.
- W2169292608 hasConcept C127413603 @default.
- W2169292608 hasConcept C144133560 @default.
- W2169292608 hasConcept C153294291 @default.
- W2169292608 hasConcept C154945302 @default.
- W2169292608 hasConcept C17744445 @default.
- W2169292608 hasConcept C191935318 @default.
- W2169292608 hasConcept C199539241 @default.
- W2169292608 hasConcept C2522767166 @default.
- W2169292608 hasConcept C2777211547 @default.
- W2169292608 hasConcept C2778348171 @default.
- W2169292608 hasConcept C41008148 @default.
- W2169292608 hasConceptScore W2169292608C10138342 @default.
- W2169292608 hasConceptScore W2169292608C110354214 @default.
- W2169292608 hasConceptScore W2169292608C119857082 @default.
- W2169292608 hasConceptScore W2169292608C121332964 @default.
- W2169292608 hasConceptScore W2169292608C127413603 @default.
- W2169292608 hasConceptScore W2169292608C144133560 @default.
- W2169292608 hasConceptScore W2169292608C153294291 @default.
- W2169292608 hasConceptScore W2169292608C154945302 @default.
- W2169292608 hasConceptScore W2169292608C17744445 @default.
- W2169292608 hasConceptScore W2169292608C191935318 @default.
- W2169292608 hasConceptScore W2169292608C199539241 @default.
- W2169292608 hasConceptScore W2169292608C2522767166 @default.
- W2169292608 hasConceptScore W2169292608C2777211547 @default.
- W2169292608 hasConceptScore W2169292608C2778348171 @default.
- W2169292608 hasConceptScore W2169292608C41008148 @default.
- W2169292608 hasIssue "3" @default.
- W2169292608 hasLocation W21692926081 @default.
- W2169292608 hasOpenAccess W2169292608 @default.
- W2169292608 hasPrimaryLocation W21692926081 @default.
- W2169292608 hasRelatedWork W2363650158 @default.
- W2169292608 hasRelatedWork W2375027084 @default.
- W2169292608 hasRelatedWork W2384699458 @default.
- W2169292608 hasRelatedWork W2748952813 @default.
- W2169292608 hasRelatedWork W2961085424 @default.
- W2169292608 hasRelatedWork W3205056952 @default.
- W2169292608 hasRelatedWork W4286629047 @default.
- W2169292608 hasRelatedWork W4306674287 @default.
- W2169292608 hasRelatedWork W934968739 @default.
- W2169292608 hasRelatedWork W4224009465 @default.
- W2169292608 hasVolume "36" @default.
- W2169292608 isParatext "false" @default.
- W2169292608 isRetracted "false" @default.
- W2169292608 magId "2169292608" @default.
- W2169292608 workType "article" @default.