Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169321640> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2169321640 endingPage "26" @default.
- W2169321640 startingPage "20" @default.
- W2169321640 abstract "Detection of affected areas in images is a crucial step in assessing the depth of the affected area for municipal operators. These affected areas in the underground images, which are line images are indicative of the condition of buried infrastructures like sewers and water mains. These images identify affected areas and extract their properties like structures from the images, whose contrast has been enhanced... A Centroid Model for the Depth Assessment of Images using Rough Fuzzy Set Techniques presents a three step method which is a simple, robust and efficient one to detect affected areas in the underground concrete images. The proposed methodology is to use segmentation and feature extraction using structural elements. The main objective for using this model is to find the dimensions of the affected areas such as the length, width, depth and the type of the defects/affected areas. Although human eye is extremely effective at recognition and classification, it is not suitable for assessing defects in images, which might have spread over thousands of miles of image lines. The reasons are mainly fatigue, subjectivity and cost. Our objective is to reduce the effort and the labour of a person in detecting the affected areas in underground images. A proposal to apply rough fuzzy set theory to compute the lower and upper approximations of the affected area of the image is made in this paper. In this connection we propose to use some concepts and technology developed by Pal and Maji." @default.
- W2169321640 created "2016-06-24" @default.
- W2169321640 creator A5015298492 @default.
- W2169321640 creator A5041346094 @default.
- W2169321640 date "2012-04-01" @default.
- W2169321640 modified "2023-10-04" @default.
- W2169321640 title "A Centroid Model for the Depth Assessment of Images using Rough Fuzzy Set Techniques" @default.
- W2169321640 cites W1557923305 @default.
- W2169321640 cites W1963623641 @default.
- W2169321640 cites W2027654459 @default.
- W2169321640 cites W2070274273 @default.
- W2169321640 cites W2097221445 @default.
- W2169321640 cites W2106238010 @default.
- W2169321640 cites W2113535566 @default.
- W2169321640 cites W2124592837 @default.
- W2169321640 cites W2132864254 @default.
- W2169321640 cites W2912565176 @default.
- W2169321640 doi "https://doi.org/10.5815/ijisa.2012.03.03" @default.
- W2169321640 hasPublicationYear "2012" @default.
- W2169321640 type Work @default.
- W2169321640 sameAs 2169321640 @default.
- W2169321640 citedByCount "7" @default.
- W2169321640 countsByYear W21693216402013 @default.
- W2169321640 countsByYear W21693216402014 @default.
- W2169321640 countsByYear W21693216402015 @default.
- W2169321640 countsByYear W21693216402016 @default.
- W2169321640 countsByYear W21693216402017 @default.
- W2169321640 crossrefType "journal-article" @default.
- W2169321640 hasAuthorship W2169321640A5015298492 @default.
- W2169321640 hasAuthorship W2169321640A5041346094 @default.
- W2169321640 hasBestOaLocation W21693216401 @default.
- W2169321640 hasConcept C111012933 @default.
- W2169321640 hasConcept C115961682 @default.
- W2169321640 hasConcept C124101348 @default.
- W2169321640 hasConcept C146599234 @default.
- W2169321640 hasConcept C153180895 @default.
- W2169321640 hasConcept C154945302 @default.
- W2169321640 hasConcept C177264268 @default.
- W2169321640 hasConcept C199360897 @default.
- W2169321640 hasConcept C31972630 @default.
- W2169321640 hasConcept C41008148 @default.
- W2169321640 hasConcept C42011625 @default.
- W2169321640 hasConcept C58166 @default.
- W2169321640 hasConceptScore W2169321640C111012933 @default.
- W2169321640 hasConceptScore W2169321640C115961682 @default.
- W2169321640 hasConceptScore W2169321640C124101348 @default.
- W2169321640 hasConceptScore W2169321640C146599234 @default.
- W2169321640 hasConceptScore W2169321640C153180895 @default.
- W2169321640 hasConceptScore W2169321640C154945302 @default.
- W2169321640 hasConceptScore W2169321640C177264268 @default.
- W2169321640 hasConceptScore W2169321640C199360897 @default.
- W2169321640 hasConceptScore W2169321640C31972630 @default.
- W2169321640 hasConceptScore W2169321640C41008148 @default.
- W2169321640 hasConceptScore W2169321640C42011625 @default.
- W2169321640 hasConceptScore W2169321640C58166 @default.
- W2169321640 hasIssue "3" @default.
- W2169321640 hasLocation W21693216401 @default.
- W2169321640 hasOpenAccess W2169321640 @default.
- W2169321640 hasPrimaryLocation W21693216401 @default.
- W2169321640 hasRelatedWork W1562288862 @default.
- W2169321640 hasRelatedWork W1905844197 @default.
- W2169321640 hasRelatedWork W1976416492 @default.
- W2169321640 hasRelatedWork W1976767786 @default.
- W2169321640 hasRelatedWork W2019992318 @default.
- W2169321640 hasRelatedWork W2112992691 @default.
- W2169321640 hasRelatedWork W2148623792 @default.
- W2169321640 hasRelatedWork W2370723160 @default.
- W2169321640 hasRelatedWork W2543148038 @default.
- W2169321640 hasRelatedWork W3057148036 @default.
- W2169321640 hasVolume "4" @default.
- W2169321640 isParatext "false" @default.
- W2169321640 isRetracted "false" @default.
- W2169321640 magId "2169321640" @default.
- W2169321640 workType "article" @default.