Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169430005> ?p ?o ?g. }
- W2169430005 endingPage "e48036" @default.
- W2169430005 startingPage "e48036" @default.
- W2169430005 abstract "Background Utilizing highly precise spatial resolutions within disease outbreak detection, such as the patients’ address, is most desirable as this provides the actual residential location of the infected individual(s). However, this level of precision is not always readily available or only available for purchase, and when utilized, increases the risk of exposing protected health information. Aggregating data to less precise scales (e.g., ZIP code or county centroids) may mitigate this risk but at the expense of potentially masking smaller isolated high risk areas. Methods To experimentally examine the effect of spatial data resolution on space-time cluster detection, we extracted administrative medical claims data for 122500 viral lung episodes occurring during 2007–2010 in Tennessee. We generated 10000 spatial datasets with varying cluster location, size and intensity at the address-level. To represent spatial data aggregation (i.e., reduced resolution), we then created 10000 corresponding datasets both at the ZIP code and county level for a total of 30000 datasets. Using the space-time permutation scan statistic and the SaTScan™ cluster software, we evaluated statistical power, sensitivity and positive predictive values of outbreak detection when using exact address locations compared to ZIP code and county level aggregations. Results The power to detect disease outbreaks did not largely diminish when using spatially aggregated data compared to more precise address information. However, aggregations negatively impacted the ability to more accurately determine the exact spatial location of the outbreak, particularly in smaller clusters (<800 km2). Conclusions Spatial aggregations do not necessitate a loss of power or sensitivity; rather, the relationship is more complex and involves simultaneously considering relative risk within the cluster and cluster size. The likelihood of spatially over-estimating outbreaks by including geographical areas outside the actual disease cluster increases with aggregated data." @default.
- W2169430005 created "2016-06-24" @default.
- W2169430005 creator A5007262202 @default.
- W2169430005 creator A5011244043 @default.
- W2169430005 date "2012-10-24" @default.
- W2169430005 modified "2023-10-14" @default.
- W2169430005 title "Influence of Spatial Resolution on Space-Time Disease Cluster Detection" @default.
- W2169430005 cites W1973886547 @default.
- W2169430005 cites W2061489269 @default.
- W2169430005 cites W2068154203 @default.
- W2169430005 cites W2072719872 @default.
- W2169430005 cites W2075436538 @default.
- W2169430005 cites W2080348715 @default.
- W2169430005 cites W2091700049 @default.
- W2169430005 cites W2107066408 @default.
- W2169430005 cites W2110624421 @default.
- W2169430005 cites W2119721623 @default.
- W2169430005 cites W2121788922 @default.
- W2169430005 cites W2135141104 @default.
- W2169430005 cites W2136889331 @default.
- W2169430005 cites W2145076372 @default.
- W2169430005 cites W2155189472 @default.
- W2169430005 cites W2160783346 @default.
- W2169430005 cites W2165317454 @default.
- W2169430005 cites W2170597974 @default.
- W2169430005 cites W4251438926 @default.
- W2169430005 cites W4324114541 @default.
- W2169430005 doi "https://doi.org/10.1371/journal.pone.0048036" @default.
- W2169430005 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3480474" @default.
- W2169430005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23110167" @default.
- W2169430005 hasPublicationYear "2012" @default.
- W2169430005 type Work @default.
- W2169430005 sameAs 2169430005 @default.
- W2169430005 citedByCount "41" @default.
- W2169430005 countsByYear W21694300052014 @default.
- W2169430005 countsByYear W21694300052015 @default.
- W2169430005 countsByYear W21694300052016 @default.
- W2169430005 countsByYear W21694300052017 @default.
- W2169430005 countsByYear W21694300052018 @default.
- W2169430005 countsByYear W21694300052019 @default.
- W2169430005 countsByYear W21694300052020 @default.
- W2169430005 countsByYear W21694300052021 @default.
- W2169430005 countsByYear W21694300052022 @default.
- W2169430005 countsByYear W21694300052023 @default.
- W2169430005 crossrefType "journal-article" @default.
- W2169430005 hasAuthorship W2169430005A5007262202 @default.
- W2169430005 hasAuthorship W2169430005A5011244043 @default.
- W2169430005 hasBestOaLocation W21694300051 @default.
- W2169430005 hasConcept C105795698 @default.
- W2169430005 hasConcept C107130276 @default.
- W2169430005 hasConcept C116675565 @default.
- W2169430005 hasConcept C124101348 @default.
- W2169430005 hasConcept C126322002 @default.
- W2169430005 hasConcept C142362112 @default.
- W2169430005 hasConcept C146599234 @default.
- W2169430005 hasConcept C153349607 @default.
- W2169430005 hasConcept C154945302 @default.
- W2169430005 hasConcept C159047783 @default.
- W2169430005 hasConcept C159620131 @default.
- W2169430005 hasConcept C164866538 @default.
- W2169430005 hasConcept C186744025 @default.
- W2169430005 hasConcept C199360897 @default.
- W2169430005 hasConcept C205649164 @default.
- W2169430005 hasConcept C2777402240 @default.
- W2169430005 hasConcept C2781302328 @default.
- W2169430005 hasConcept C33923547 @default.
- W2169430005 hasConcept C41008148 @default.
- W2169430005 hasConcept C58640448 @default.
- W2169430005 hasConcept C62649853 @default.
- W2169430005 hasConcept C71924100 @default.
- W2169430005 hasConcept C89128539 @default.
- W2169430005 hasConcept C96608239 @default.
- W2169430005 hasConceptScore W2169430005C105795698 @default.
- W2169430005 hasConceptScore W2169430005C107130276 @default.
- W2169430005 hasConceptScore W2169430005C116675565 @default.
- W2169430005 hasConceptScore W2169430005C124101348 @default.
- W2169430005 hasConceptScore W2169430005C126322002 @default.
- W2169430005 hasConceptScore W2169430005C142362112 @default.
- W2169430005 hasConceptScore W2169430005C146599234 @default.
- W2169430005 hasConceptScore W2169430005C153349607 @default.
- W2169430005 hasConceptScore W2169430005C154945302 @default.
- W2169430005 hasConceptScore W2169430005C159047783 @default.
- W2169430005 hasConceptScore W2169430005C159620131 @default.
- W2169430005 hasConceptScore W2169430005C164866538 @default.
- W2169430005 hasConceptScore W2169430005C186744025 @default.
- W2169430005 hasConceptScore W2169430005C199360897 @default.
- W2169430005 hasConceptScore W2169430005C205649164 @default.
- W2169430005 hasConceptScore W2169430005C2777402240 @default.
- W2169430005 hasConceptScore W2169430005C2781302328 @default.
- W2169430005 hasConceptScore W2169430005C33923547 @default.
- W2169430005 hasConceptScore W2169430005C41008148 @default.
- W2169430005 hasConceptScore W2169430005C58640448 @default.
- W2169430005 hasConceptScore W2169430005C62649853 @default.
- W2169430005 hasConceptScore W2169430005C71924100 @default.
- W2169430005 hasConceptScore W2169430005C89128539 @default.
- W2169430005 hasConceptScore W2169430005C96608239 @default.
- W2169430005 hasIssue "10" @default.
- W2169430005 hasLocation W21694300051 @default.