Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169476964> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2169476964 abstract "Active learning is a generic approach to accelerate training of classifiers in order to achieve a higher accuracy with a small number of training examples. In the past, simple active learning algorithms like random learning and query learning have been proposed for the design of support vector machine (SVM) classifiers. In random learning, examples are chosen randomly, while in query learning examples closer to the current separating hyperplane are chosen at each learning step. However, it is observed that a better scheme would be to use random learning in the initial stages (more exploration) and query learning in the final stages (more exploitation) of learning. Here we present two novel active SV learning algorithms which use adaptive mixtures of random and query learning. One of the proposed algorithms is inspired by online decision problems, and involves a hard choice among the pure strategies at each step. The other extends this to soft choices using a mixture of instances recommended by the individual pure strategies. Both strategies handle the exploration-exploitation trade-off in an efficient manner. The efficacy of the algorithms is demonstrated by experiments on benchmark datasets." @default.
- W2169476964 created "2016-06-24" @default.
- W2169476964 creator A5004812994 @default.
- W2169476964 creator A5032809289 @default.
- W2169476964 creator A5035915615 @default.
- W2169476964 date "2005-03-13" @default.
- W2169476964 modified "2023-09-27" @default.
- W2169476964 title "Stochastic scheduling of active support vector learning algorithms" @default.
- W2169476964 cites W1975846642 @default.
- W2169476964 cites W2046112342 @default.
- W2169476964 cites W2139212933 @default.
- W2169476964 cites W2151023586 @default.
- W2169476964 cites W2426031434 @default.
- W2169476964 cites W3014245600 @default.
- W2169476964 doi "https://doi.org/10.1145/1066677.1066689" @default.
- W2169476964 hasPublicationYear "2005" @default.
- W2169476964 type Work @default.
- W2169476964 sameAs 2169476964 @default.
- W2169476964 citedByCount "6" @default.
- W2169476964 countsByYear W21694769642015 @default.
- W2169476964 countsByYear W21694769642016 @default.
- W2169476964 crossrefType "proceedings-article" @default.
- W2169476964 hasAuthorship W2169476964A5004812994 @default.
- W2169476964 hasAuthorship W2169476964A5032809289 @default.
- W2169476964 hasAuthorship W2169476964A5035915615 @default.
- W2169476964 hasBestOaLocation W21694769642 @default.
- W2169476964 hasConcept C11413529 @default.
- W2169476964 hasConcept C115903097 @default.
- W2169476964 hasConcept C119857082 @default.
- W2169476964 hasConcept C12267149 @default.
- W2169476964 hasConcept C12298181 @default.
- W2169476964 hasConcept C13280743 @default.
- W2169476964 hasConcept C154945302 @default.
- W2169476964 hasConcept C185798385 @default.
- W2169476964 hasConcept C188888258 @default.
- W2169476964 hasConcept C19966478 @default.
- W2169476964 hasConcept C205649164 @default.
- W2169476964 hasConcept C24138899 @default.
- W2169476964 hasConcept C41008148 @default.
- W2169476964 hasConcept C58973888 @default.
- W2169476964 hasConcept C77967617 @default.
- W2169476964 hasConcept C90509273 @default.
- W2169476964 hasConceptScore W2169476964C11413529 @default.
- W2169476964 hasConceptScore W2169476964C115903097 @default.
- W2169476964 hasConceptScore W2169476964C119857082 @default.
- W2169476964 hasConceptScore W2169476964C12267149 @default.
- W2169476964 hasConceptScore W2169476964C12298181 @default.
- W2169476964 hasConceptScore W2169476964C13280743 @default.
- W2169476964 hasConceptScore W2169476964C154945302 @default.
- W2169476964 hasConceptScore W2169476964C185798385 @default.
- W2169476964 hasConceptScore W2169476964C188888258 @default.
- W2169476964 hasConceptScore W2169476964C19966478 @default.
- W2169476964 hasConceptScore W2169476964C205649164 @default.
- W2169476964 hasConceptScore W2169476964C24138899 @default.
- W2169476964 hasConceptScore W2169476964C41008148 @default.
- W2169476964 hasConceptScore W2169476964C58973888 @default.
- W2169476964 hasConceptScore W2169476964C77967617 @default.
- W2169476964 hasConceptScore W2169476964C90509273 @default.
- W2169476964 hasLocation W21694769641 @default.
- W2169476964 hasLocation W21694769642 @default.
- W2169476964 hasOpenAccess W2169476964 @default.
- W2169476964 hasPrimaryLocation W21694769641 @default.
- W2169476964 hasRelatedWork W2006698109 @default.
- W2169476964 hasRelatedWork W2131495543 @default.
- W2169476964 hasRelatedWork W2169476964 @default.
- W2169476964 hasRelatedWork W2907115148 @default.
- W2169476964 hasRelatedWork W3130794906 @default.
- W2169476964 hasRelatedWork W3196155444 @default.
- W2169476964 hasRelatedWork W3210156800 @default.
- W2169476964 hasRelatedWork W4307478737 @default.
- W2169476964 hasRelatedWork W4319309271 @default.
- W2169476964 hasRelatedWork W4320063314 @default.
- W2169476964 isParatext "false" @default.
- W2169476964 isRetracted "false" @default.
- W2169476964 magId "2169476964" @default.
- W2169476964 workType "article" @default.