Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169503709> ?p ?o ?g. }
- W2169503709 abstract "Monitoring widespread environmental fields is undoubtedly a practically important area of research with many complex and challenging tasks. It involves the building of models of the fields or natural phenomena to be monitored, the estimation of the spatio-temporal distribution of a variety of environmental parameters of interest, such as moisture or salinity in a crop field, or the spatial distribution of vital natural resources such as oil and gas, etc. Sampling, a key operation of the monitoring process, is a broad methodology for gathering statistical information about the phenomenon, or environmental variable, being monitored. To efficiently monitor widespread fields and estimate the spatio-temporal distribution of some particular environmental variable, calls for the use of a sampling strategy can fuse information from different scales of sensors. Such an attractive strategy is well catered for by both the capabilities and distributed nature of wireless sensor networks and the mobility of robots performing the sampling (sensing) tasks. This sampling strategy could even be rendered “adaptive” in that the decision of “where to sample next” evolves temporally with past measurements and is optimally computed. In this article, we examine various single-robot and multi-robot adaptive sampling schemes based on different extended Kalman filter filtering structures such as centralized and decentralized filters as well as our own novel decentralized and distributed filters. Our investigation shows that, whereas the first two filters suffer from a heavy computational or communication load, our proposed method, through its key feature of distributing the filtering task amongst the robots used, manages to reduce both loads and the total reconstruction time. It also enjoys the added attractive feature of scalability that allows the structure of the proposed monitoring scheme to grow with the complexity of the field under study. Our results are corroborated by our simulation work and offer ample encouragement for a further theoretical investigation of some properties of the proposed scheme and its implementation on a physical system. Both of these activities are currently underway." @default.
- W2169503709 created "2016-06-24" @default.
- W2169503709 creator A5074631522 @default.
- W2169503709 creator A5075063838 @default.
- W2169503709 creator A5089902968 @default.
- W2169503709 date "2012-07-18" @default.
- W2169503709 modified "2023-09-24" @default.
- W2169503709 title "A distributed multi-robot adaptive sampling scheme for the estimation of the spatial distribution in widespread fields" @default.
- W2169503709 cites W1965705620 @default.
- W2169503709 cites W1979985069 @default.
- W2169503709 cites W2009441412 @default.
- W2169503709 cites W2021960928 @default.
- W2169503709 cites W2025800439 @default.
- W2169503709 cites W2032870021 @default.
- W2169503709 cites W2051752778 @default.
- W2169503709 cites W2081739442 @default.
- W2169503709 cites W2085283680 @default.
- W2169503709 cites W2099033271 @default.
- W2169503709 cites W2099319707 @default.
- W2169503709 cites W2106908146 @default.
- W2169503709 cites W2108141477 @default.
- W2169503709 cites W2108651704 @default.
- W2169503709 cites W2112411455 @default.
- W2169503709 cites W2113076747 @default.
- W2169503709 cites W2143400467 @default.
- W2169503709 cites W2147745043 @default.
- W2169503709 cites W3099664902 @default.
- W2169503709 cites W55912154 @default.
- W2169503709 doi "https://doi.org/10.1186/1687-1499-2012-223" @default.
- W2169503709 hasPublicationYear "2012" @default.
- W2169503709 type Work @default.
- W2169503709 sameAs 2169503709 @default.
- W2169503709 citedByCount "6" @default.
- W2169503709 countsByYear W21695037092015 @default.
- W2169503709 countsByYear W21695037092017 @default.
- W2169503709 countsByYear W21695037092018 @default.
- W2169503709 countsByYear W21695037092019 @default.
- W2169503709 countsByYear W21695037092020 @default.
- W2169503709 crossrefType "journal-article" @default.
- W2169503709 hasAuthorship W2169503709A5074631522 @default.
- W2169503709 hasAuthorship W2169503709A5075063838 @default.
- W2169503709 hasAuthorship W2169503709A5089902968 @default.
- W2169503709 hasBestOaLocation W21695037091 @default.
- W2169503709 hasConcept C105795698 @default.
- W2169503709 hasConcept C106131492 @default.
- W2169503709 hasConcept C120314980 @default.
- W2169503709 hasConcept C124101348 @default.
- W2169503709 hasConcept C127313418 @default.
- W2169503709 hasConcept C134306372 @default.
- W2169503709 hasConcept C140779682 @default.
- W2169503709 hasConcept C154945302 @default.
- W2169503709 hasConcept C159620131 @default.
- W2169503709 hasConcept C162324750 @default.
- W2169503709 hasConcept C182365436 @default.
- W2169503709 hasConcept C187736073 @default.
- W2169503709 hasConcept C19499675 @default.
- W2169503709 hasConcept C202444582 @default.
- W2169503709 hasConcept C24590314 @default.
- W2169503709 hasConcept C26517878 @default.
- W2169503709 hasConcept C2780451532 @default.
- W2169503709 hasConcept C2781395549 @default.
- W2169503709 hasConcept C31258907 @default.
- W2169503709 hasConcept C31972630 @default.
- W2169503709 hasConcept C33923547 @default.
- W2169503709 hasConcept C38652104 @default.
- W2169503709 hasConcept C41008148 @default.
- W2169503709 hasConcept C62649853 @default.
- W2169503709 hasConcept C79403827 @default.
- W2169503709 hasConcept C90509273 @default.
- W2169503709 hasConcept C9652623 @default.
- W2169503709 hasConceptScore W2169503709C105795698 @default.
- W2169503709 hasConceptScore W2169503709C106131492 @default.
- W2169503709 hasConceptScore W2169503709C120314980 @default.
- W2169503709 hasConceptScore W2169503709C124101348 @default.
- W2169503709 hasConceptScore W2169503709C127313418 @default.
- W2169503709 hasConceptScore W2169503709C134306372 @default.
- W2169503709 hasConceptScore W2169503709C140779682 @default.
- W2169503709 hasConceptScore W2169503709C154945302 @default.
- W2169503709 hasConceptScore W2169503709C159620131 @default.
- W2169503709 hasConceptScore W2169503709C162324750 @default.
- W2169503709 hasConceptScore W2169503709C182365436 @default.
- W2169503709 hasConceptScore W2169503709C187736073 @default.
- W2169503709 hasConceptScore W2169503709C19499675 @default.
- W2169503709 hasConceptScore W2169503709C202444582 @default.
- W2169503709 hasConceptScore W2169503709C24590314 @default.
- W2169503709 hasConceptScore W2169503709C26517878 @default.
- W2169503709 hasConceptScore W2169503709C2780451532 @default.
- W2169503709 hasConceptScore W2169503709C2781395549 @default.
- W2169503709 hasConceptScore W2169503709C31258907 @default.
- W2169503709 hasConceptScore W2169503709C31972630 @default.
- W2169503709 hasConceptScore W2169503709C33923547 @default.
- W2169503709 hasConceptScore W2169503709C38652104 @default.
- W2169503709 hasConceptScore W2169503709C41008148 @default.
- W2169503709 hasConceptScore W2169503709C62649853 @default.
- W2169503709 hasConceptScore W2169503709C79403827 @default.
- W2169503709 hasConceptScore W2169503709C90509273 @default.
- W2169503709 hasConceptScore W2169503709C9652623 @default.
- W2169503709 hasIssue "1" @default.
- W2169503709 hasLocation W21695037091 @default.
- W2169503709 hasOpenAccess W2169503709 @default.