Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169571957> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2169571957 endingPage "47" @default.
- W2169571957 startingPage "23" @default.
- W2169571957 abstract "Artin--Tits groups of spherical type have two well-known Garside structures, coming respectively from the divisibility properties of the classical Artin monoid and of the dual monoid. For general Artin--Tits groups, the classical monoids have no such Garside property. In the present paper we define dual monoids for all Artin--Tits groups and we prove that for the type $tilde A_n$ we get a (quasi)-Garside structure. Such a structure provides normal forms for the Artin--Tits group elements and allows to solve some questions such as to determine the centralizer of a power of the Coxeter element in the Artin--Tits group. More precisely, if $W$ is a Coxeter group, one can consider the length $l_R$ on $W$ with respect to the generating set $R$ consisting of all reflections. Let $c$ be a Coxeter element in $W$ and let $P_c$ be the set of elements $pin W$ such that $c$ can be written $c=pp'$ with $l_R(c)=l_R(p)+l_R(p')$. We define the monoid $M(P_c)$ to be the monoid generated by a set $underline P_c$ in one-to-one correspondence, $pmapsto underline p$, with $P_c$ with only relations $underline{pp'}=underline p.underline p'$ whenever $p$, $p'$ and $pp'$ are in $P_c$ and $l_R(pp')=l_R(p)+l_R(p')$. We conjecture that the group of quotients of $M(P_c)$ is the Artin--Tits group associated to $W$ and that it has a simple presentation (see 1.1 (ii)). These conjectures are known to be true for spherical type Artin--Tits groups. Here we prove them for Artin--Tits groups of type $tilde A$. Moreover, we show that for exactly one choice of the Coxeter element (up to diagram automorphism) we obtain a (quasi-) Garside monoid. The proof makes use of non-crossing paths in an annulus which are the counterpart in this context of the non-crossing partitions used for type $A$." @default.
- W2169571957 created "2016-06-24" @default.
- W2169571957 creator A5032995115 @default.
- W2169571957 date "2006-01-01" @default.
- W2169571957 modified "2023-10-02" @default.
- W2169571957 title "Présentations duales des groupes de tresses de type affine Ã" @default.
- W2169571957 cites W1510366593 @default.
- W2169571957 cites W1512323832 @default.
- W2169571957 cites W1835084804 @default.
- W2169571957 cites W1985191507 @default.
- W2169571957 cites W2008245128 @default.
- W2169571957 cites W2027297841 @default.
- W2169571957 cites W2046657616 @default.
- W2169571957 cites W2075135589 @default.
- W2169571957 cites W2156285104 @default.
- W2169571957 doi "https://doi.org/10.4171/cmh/41" @default.
- W2169571957 hasPublicationYear "2006" @default.
- W2169571957 type Work @default.
- W2169571957 sameAs 2169571957 @default.
- W2169571957 citedByCount "42" @default.
- W2169571957 countsByYear W21695719572012 @default.
- W2169571957 countsByYear W21695719572013 @default.
- W2169571957 countsByYear W21695719572014 @default.
- W2169571957 countsByYear W21695719572015 @default.
- W2169571957 countsByYear W21695719572017 @default.
- W2169571957 countsByYear W21695719572019 @default.
- W2169571957 countsByYear W21695719572020 @default.
- W2169571957 countsByYear W21695719572021 @default.
- W2169571957 countsByYear W21695719572022 @default.
- W2169571957 countsByYear W21695719572023 @default.
- W2169571957 crossrefType "journal-article" @default.
- W2169571957 hasAuthorship W2169571957A5032995115 @default.
- W2169571957 hasBestOaLocation W21695719571 @default.
- W2169571957 hasConcept C114614502 @default.
- W2169571957 hasConcept C140860697 @default.
- W2169571957 hasConcept C143669375 @default.
- W2169571957 hasConcept C178790620 @default.
- W2169571957 hasConcept C185592680 @default.
- W2169571957 hasConcept C18903297 @default.
- W2169571957 hasConcept C206901836 @default.
- W2169571957 hasConcept C2777299769 @default.
- W2169571957 hasConcept C2781311116 @default.
- W2169571957 hasConcept C33923547 @default.
- W2169571957 hasConcept C40233952 @default.
- W2169571957 hasConcept C75174853 @default.
- W2169571957 hasConcept C86803240 @default.
- W2169571957 hasConceptScore W2169571957C114614502 @default.
- W2169571957 hasConceptScore W2169571957C140860697 @default.
- W2169571957 hasConceptScore W2169571957C143669375 @default.
- W2169571957 hasConceptScore W2169571957C178790620 @default.
- W2169571957 hasConceptScore W2169571957C185592680 @default.
- W2169571957 hasConceptScore W2169571957C18903297 @default.
- W2169571957 hasConceptScore W2169571957C206901836 @default.
- W2169571957 hasConceptScore W2169571957C2777299769 @default.
- W2169571957 hasConceptScore W2169571957C2781311116 @default.
- W2169571957 hasConceptScore W2169571957C33923547 @default.
- W2169571957 hasConceptScore W2169571957C40233952 @default.
- W2169571957 hasConceptScore W2169571957C75174853 @default.
- W2169571957 hasConceptScore W2169571957C86803240 @default.
- W2169571957 hasLocation W21695719571 @default.
- W2169571957 hasOpenAccess W2169571957 @default.
- W2169571957 hasPrimaryLocation W21695719571 @default.
- W2169571957 hasRelatedWork W1964531148 @default.
- W2169571957 hasRelatedWork W2103271923 @default.
- W2169571957 hasRelatedWork W2141912615 @default.
- W2169571957 hasRelatedWork W2800291541 @default.
- W2169571957 hasRelatedWork W2949242690 @default.
- W2169571957 hasRelatedWork W2953130182 @default.
- W2169571957 hasRelatedWork W2963489774 @default.
- W2169571957 hasRelatedWork W3121212105 @default.
- W2169571957 hasRelatedWork W4294002163 @default.
- W2169571957 hasRelatedWork W4300419201 @default.
- W2169571957 isParatext "false" @default.
- W2169571957 isRetracted "false" @default.
- W2169571957 magId "2169571957" @default.
- W2169571957 workType "article" @default.