Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169577049> ?p ?o ?g. }
- W2169577049 endingPage "63" @default.
- W2169577049 startingPage "51" @default.
- W2169577049 abstract "For the investigation of many geometrical features of soils, computer-assisted image analysis has become a method of choice over the last few decades. This analysis involves numerous steps, regarding which subjective decisions have to be made by the individuals conducting the research. This is particularly the case with the thresholding step, required to transform the original (color or greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice–Boltzmann models. Limited information exists at present on whether different observers, analyzing the same soil, would be likely to obtain similar results. In this general context, the first objective of the research reported in this article was to determine, through a so-called “round-robin” test, how much variation exists among the outcomes of various image thresholding strategies (including any image pre-treatment deemed appropriate), routinely adopted by soil scientists. Three test images – of a field soil, a soil thin section, and a virtual section through a 3-dimensional CT data set – were thresholded by 13 experts, worldwide. At the same time, variability of the outcomes of a set of automatic thresholding algorithms, applied to portions of the test images, was also investigated. The experimental results obtained illustrate the fact that experts rely on very different approaches to threshold images of soils, and that there is considerable observer influence associated with this thresholding. This observer dependence is not likely to be alleviated by adoption of one of the many existing automatic thresholding algorithms, many of which produce thresholded images that are equally, or even more, variable than those of the experts. These observations suggest that, at this point, analysis of the same image of a soil, be it a simple photograph or 3-dimensional X-ray CT data, by different individuals can lead to very different results, without any assurance that any of them would be even approximately “correct” or best suited to the objective at hand. Different strategies are proposed to cope with this situation, including the use of physical “standards”, adoption of procedures to assess the accuracy of thresholding, benchmarking with physical measurements, or the development of computational methods that do not require binary images." @default.
- W2169577049 created "2016-06-24" @default.
- W2169577049 creator A5008189069 @default.
- W2169577049 creator A5009857513 @default.
- W2169577049 creator A5010304193 @default.
- W2169577049 creator A5030838786 @default.
- W2169577049 creator A5034008514 @default.
- W2169577049 creator A5038965264 @default.
- W2169577049 creator A5039898985 @default.
- W2169577049 creator A5046597133 @default.
- W2169577049 creator A5062062954 @default.
- W2169577049 creator A5068587612 @default.
- W2169577049 creator A5076983797 @default.
- W2169577049 creator A5079754155 @default.
- W2169577049 creator A5082623974 @default.
- W2169577049 creator A5084710018 @default.
- W2169577049 creator A5086058822 @default.
- W2169577049 creator A5089558986 @default.
- W2169577049 creator A5090779957 @default.
- W2169577049 date "2010-06-01" @default.
- W2169577049 modified "2023-10-17" @default.
- W2169577049 title "Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data" @default.
- W2169577049 cites W1852396935 @default.
- W2169577049 cites W1964150635 @default.
- W2169577049 cites W1968602016 @default.
- W2169577049 cites W1969315969 @default.
- W2169577049 cites W1975720022 @default.
- W2169577049 cites W1975793238 @default.
- W2169577049 cites W1976931438 @default.
- W2169577049 cites W1977367431 @default.
- W2169577049 cites W1980491251 @default.
- W2169577049 cites W1994211551 @default.
- W2169577049 cites W1996913543 @default.
- W2169577049 cites W1997136443 @default.
- W2169577049 cites W2008654732 @default.
- W2169577049 cites W2008979535 @default.
- W2169577049 cites W2013389626 @default.
- W2169577049 cites W2016868918 @default.
- W2169577049 cites W2020706418 @default.
- W2169577049 cites W2027076756 @default.
- W2169577049 cites W2038945077 @default.
- W2169577049 cites W2039799089 @default.
- W2169577049 cites W2043438338 @default.
- W2169577049 cites W2044890828 @default.
- W2169577049 cites W2046488234 @default.
- W2169577049 cites W2048001691 @default.
- W2169577049 cites W2050039725 @default.
- W2169577049 cites W2051052027 @default.
- W2169577049 cites W2053492921 @default.
- W2169577049 cites W2059645709 @default.
- W2169577049 cites W2059686954 @default.
- W2169577049 cites W2065873728 @default.
- W2169577049 cites W2066044543 @default.
- W2169577049 cites W2067809007 @default.
- W2169577049 cites W2070216078 @default.
- W2169577049 cites W2074513039 @default.
- W2169577049 cites W2075497170 @default.
- W2169577049 cites W2078196315 @default.
- W2169577049 cites W2079572398 @default.
- W2169577049 cites W2084586151 @default.
- W2169577049 cites W2101366327 @default.
- W2169577049 cites W2109023074 @default.
- W2169577049 cites W2110230628 @default.
- W2169577049 cites W2127408447 @default.
- W2169577049 cites W2132834693 @default.
- W2169577049 cites W2133003941 @default.
- W2169577049 cites W2133428036 @default.
- W2169577049 cites W2138973222 @default.
- W2169577049 cites W2141173661 @default.
- W2169577049 cites W2145962413 @default.
- W2169577049 cites W2151928240 @default.
- W2169577049 cites W2153828099 @default.
- W2169577049 cites W2156211920 @default.
- W2169577049 cites W2158598977 @default.
- W2169577049 cites W2164525883 @default.
- W2169577049 cites W2327510663 @default.
- W2169577049 doi "https://doi.org/10.1016/j.geoderma.2010.03.015" @default.
- W2169577049 hasPublicationYear "2010" @default.
- W2169577049 type Work @default.
- W2169577049 sameAs 2169577049 @default.
- W2169577049 citedByCount "149" @default.
- W2169577049 countsByYear W21695770492012 @default.
- W2169577049 countsByYear W21695770492013 @default.
- W2169577049 countsByYear W21695770492014 @default.
- W2169577049 countsByYear W21695770492015 @default.
- W2169577049 countsByYear W21695770492016 @default.
- W2169577049 countsByYear W21695770492017 @default.
- W2169577049 countsByYear W21695770492018 @default.
- W2169577049 countsByYear W21695770492019 @default.
- W2169577049 countsByYear W21695770492020 @default.
- W2169577049 countsByYear W21695770492021 @default.
- W2169577049 countsByYear W21695770492022 @default.
- W2169577049 countsByYear W21695770492023 @default.
- W2169577049 crossrefType "journal-article" @default.
- W2169577049 hasAuthorship W2169577049A5008189069 @default.
- W2169577049 hasAuthorship W2169577049A5009857513 @default.
- W2169577049 hasAuthorship W2169577049A5010304193 @default.
- W2169577049 hasAuthorship W2169577049A5030838786 @default.