Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169598980> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2169598980 abstract "Over the last decade, there has been emphasis on the reduction of the dependency of fossil fuels that resulting in the growth of renewable energy industries. These industries have been significant economic drivers in many parts of the United States supported by both government and private sectors. As a part of renewable energy industries, there is a strong growth in solar power generation industries that often requires prediction of solar energy to develop highly efficient stand-alone photovoltaic systems as well as hybrid power systems. Specifically solar radiation prediction is a important component in the solar energy production. However, some computational intelligence methods that have most successful applications on time series prediction have not yet been investigated on solar radiation prediction. Only a limited number of neural networks models were applied to the solar radiation monitoring. Therefore, we propose an Elman style based recurrent neural network to predict solar radiation from the past solar radiation and solar energy in this research. A hybrid learning algorithm incorporating particle swarm optimization and evolutional algorithm was presented, which takes the complementary advantages of the two global optimization algorithms. The neural networks model was trained by particle swarm optimization and evolutional algorithm to forecast the solar radiation. The excellent experimental results demonstrated that the proposed hybrid learning algorithm can be successfully used for the recurrent neural networks based prediction model for the solar radiation monitoring." @default.
- W2169598980 created "2016-06-24" @default.
- W2169598980 creator A5026794628 @default.
- W2169598980 creator A5062861303 @default.
- W2169598980 creator A5074829859 @default.
- W2169598980 date "2013-04-01" @default.
- W2169598980 modified "2023-09-25" @default.
- W2169598980 title "Solar radiation prediction based on particle swarm optimization and evolutionary algorithm using recurrent neural networks" @default.
- W2169598980 cites W1577668191 @default.
- W2169598980 cites W1906393515 @default.
- W2169598980 cites W1991836718 @default.
- W2169598980 cites W2011059230 @default.
- W2169598980 cites W2015670678 @default.
- W2169598980 cites W2062994231 @default.
- W2169598980 cites W2078263131 @default.
- W2169598980 cites W2084114107 @default.
- W2169598980 cites W2087673205 @default.
- W2169598980 cites W2099920469 @default.
- W2169598980 cites W2104908927 @default.
- W2169598980 cites W2105807542 @default.
- W2169598980 cites W2106625051 @default.
- W2169598980 cites W2107716416 @default.
- W2169598980 cites W2111959411 @default.
- W2169598980 cites W2117825288 @default.
- W2169598980 cites W2122392393 @default.
- W2169598980 cites W2134109891 @default.
- W2169598980 cites W2145113795 @default.
- W2169598980 cites W2152195021 @default.
- W2169598980 cites W2153932294 @default.
- W2169598980 cites W2159682675 @default.
- W2169598980 cites W2160457932 @default.
- W2169598980 cites W2169699683 @default.
- W2169598980 cites W2170588376 @default.
- W2169598980 cites W2101771695 @default.
- W2169598980 doi "https://doi.org/10.1109/syscon.2013.6549894" @default.
- W2169598980 hasPublicationYear "2013" @default.
- W2169598980 type Work @default.
- W2169598980 sameAs 2169598980 @default.
- W2169598980 citedByCount "6" @default.
- W2169598980 countsByYear W21695989802017 @default.
- W2169598980 countsByYear W21695989802019 @default.
- W2169598980 countsByYear W21695989802021 @default.
- W2169598980 crossrefType "proceedings-article" @default.
- W2169598980 hasAuthorship W2169598980A5026794628 @default.
- W2169598980 hasAuthorship W2169598980A5062861303 @default.
- W2169598980 hasAuthorship W2169598980A5074829859 @default.
- W2169598980 hasConcept C11413529 @default.
- W2169598980 hasConcept C119599485 @default.
- W2169598980 hasConcept C127413603 @default.
- W2169598980 hasConcept C154945302 @default.
- W2169598980 hasConcept C159149176 @default.
- W2169598980 hasConcept C188573790 @default.
- W2169598980 hasConcept C41008148 @default.
- W2169598980 hasConcept C41291067 @default.
- W2169598980 hasConcept C50644808 @default.
- W2169598980 hasConcept C541104983 @default.
- W2169598980 hasConcept C85617194 @default.
- W2169598980 hasConceptScore W2169598980C11413529 @default.
- W2169598980 hasConceptScore W2169598980C119599485 @default.
- W2169598980 hasConceptScore W2169598980C127413603 @default.
- W2169598980 hasConceptScore W2169598980C154945302 @default.
- W2169598980 hasConceptScore W2169598980C159149176 @default.
- W2169598980 hasConceptScore W2169598980C188573790 @default.
- W2169598980 hasConceptScore W2169598980C41008148 @default.
- W2169598980 hasConceptScore W2169598980C41291067 @default.
- W2169598980 hasConceptScore W2169598980C50644808 @default.
- W2169598980 hasConceptScore W2169598980C541104983 @default.
- W2169598980 hasConceptScore W2169598980C85617194 @default.
- W2169598980 hasLocation W21695989801 @default.
- W2169598980 hasOpenAccess W2169598980 @default.
- W2169598980 hasPrimaryLocation W21695989801 @default.
- W2169598980 hasRelatedWork W1668963720 @default.
- W2169598980 hasRelatedWork W1991836718 @default.
- W2169598980 hasRelatedWork W2009033014 @default.
- W2169598980 hasRelatedWork W2010555267 @default.
- W2169598980 hasRelatedWork W2029482150 @default.
- W2169598980 hasRelatedWork W2389612732 @default.
- W2169598980 hasRelatedWork W2511692420 @default.
- W2169598980 hasRelatedWork W2617012962 @default.
- W2169598980 hasRelatedWork W2755726255 @default.
- W2169598980 hasRelatedWork W2761561821 @default.
- W2169598980 hasRelatedWork W2787832800 @default.
- W2169598980 hasRelatedWork W2908139362 @default.
- W2169598980 hasRelatedWork W2949806812 @default.
- W2169598980 hasRelatedWork W2967856736 @default.
- W2169598980 hasRelatedWork W3014604058 @default.
- W2169598980 hasRelatedWork W3041794582 @default.
- W2169598980 hasRelatedWork W3048448847 @default.
- W2169598980 hasRelatedWork W3089408632 @default.
- W2169598980 hasRelatedWork W3130086569 @default.
- W2169598980 hasRelatedWork W3194646897 @default.
- W2169598980 isParatext "false" @default.
- W2169598980 isRetracted "false" @default.
- W2169598980 magId "2169598980" @default.
- W2169598980 workType "article" @default.