Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169666986> ?p ?o ?g. }
- W2169666986 endingPage "1424" @default.
- W2169666986 startingPage "1399" @default.
- W2169666986 abstract "The Baguio district contains a diverse array of epithermal, porphyry and skarn deposits, together with a large, broadly strata bound, advanced argillic lithocap. Magmatism, mineralization, and alteration occurred in response to subduction of the South China Sea plate and the Scarborough Ridge beneath northern Luzon over the past 3 m.y. Rapid uplift and exhumation resulted in epithermal veins overprinting several porphyry Cu-Au deposits. Most of the epithermal Au-Ag deposits of the Baguio district (including Antamok and Acupan, the two largest Au deposits) are intermediate sulfidation state quartz-carbonate-adularia-illite-base metal sulfide veins that contain electrum and minor Au-Ag tellurides. In contrast, high sulfidation mineralization at Kelly includes enargite, tennantite, electrum, and precious metal tellurides and is associated with advanced argillic alteration.Although the mineralizing fluids that formed the porphyry and epithermal deposits had distinct temperatures and salinities, stable and radiogenic data provide evidence for direct magmatic contributions into each deposit type. The epithermal mineralizing fluids were dilute (generally, 600°C) hypersaline brines (30 to >70 wt % NaCl equiv) and low-density vapor. Sulfur isotope compositions of sulfides in the porphyry, skarn and intermediate sulfidation epithermal veins of the southern and central Baguio district are mostly between +1 and +6 per mil, consistent with a predominance of H2S in the mineralizing fluids (i.e., reducing conditions). In contrast, sulfides from the high sulfidation, porphyry, and intermediate sulfidation deposits located adjacent to the Baguio lithocap mostly have negative sulfur isotope values (−6.9 to +0.8‰), consistent with oxidizing (SO42−-predominant) mineralizing fluids.Intermediate sulfidation epithermal veins at Acupan have crosscut a well-mineralized porphyry Cu-Au stock-work at Ampucao. The two deposits cannot be distinguished on the basis of radiometric age determinations (Ampucao: 0.51 ± 0.26 Ma; Acupan: 0.65 ± 0.07 Ma), and are interpreted to be cogenetic, with telescoping of the two environments caused by the rapid uplift and exhumation associated with ridge subduction. Measured δ 34Ssulfide (+1.1 to +6.6‰), δ 34Ssulfate (+10.4 to +31.8‰) values and initial strontium ratios of anhydrite (0.70378–0.70385) are consistent with identical and predominantly magmatic sources of these components for the Ampucao porphyry and Acupan epithermal veins. Helium isotopes provide further evidence of mantle-derived components in the epithermal veins (R/Ra values of 6.0 and 6.7). Oxygen, deuterium, and carbon isotopes provide evidence for predominantly magmatic water at Ampucao and for hybrid magmatic-meteoric waters at Acupan that precipitated precious metals due to boiling. The proportion of magmatic water relative to meteoric water and precious metal grades both decreased with time during epithermal vein formation at Acupan. The common observation of cross-cutting relationships between porphyry and epithermal veins observed throughout the Baguio district imply that the evolution of porphyry-style to intermediate sulfidation-style mineralization was a common phenomenon in this region, and contributed significantly to its rich metal endowment." @default.
- W2169666986 created "2016-06-24" @default.
- W2169666986 creator A5018048527 @default.
- W2169666986 creator A5033940572 @default.
- W2169666986 creator A5058793595 @default.
- W2169666986 creator A5059441394 @default.
- W2169666986 creator A5087055209 @default.
- W2169666986 date "2011-11-17" @default.
- W2169666986 modified "2023-10-16" @default.
- W2169666986 title "Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines" @default.
- W2169666986 cites W1547907389 @default.
- W2169666986 cites W1964186137 @default.
- W2169666986 cites W1964237331 @default.
- W2169666986 cites W1964259713 @default.
- W2169666986 cites W1965260190 @default.
- W2169666986 cites W1968137064 @default.
- W2169666986 cites W1972599229 @default.
- W2169666986 cites W1973787671 @default.
- W2169666986 cites W1979705656 @default.
- W2169666986 cites W1999003357 @default.
- W2169666986 cites W2002120055 @default.
- W2169666986 cites W2003369959 @default.
- W2169666986 cites W2005121896 @default.
- W2169666986 cites W2008281306 @default.
- W2169666986 cites W2008486528 @default.
- W2169666986 cites W2012556343 @default.
- W2169666986 cites W2015483607 @default.
- W2169666986 cites W2017934677 @default.
- W2169666986 cites W2019797299 @default.
- W2169666986 cites W2021082061 @default.
- W2169666986 cites W2041519253 @default.
- W2169666986 cites W2043787408 @default.
- W2169666986 cites W2046079925 @default.
- W2169666986 cites W2062967308 @default.
- W2169666986 cites W2068202901 @default.
- W2169666986 cites W2073502802 @default.
- W2169666986 cites W2075339530 @default.
- W2169666986 cites W2076621832 @default.
- W2169666986 cites W2086066628 @default.
- W2169666986 cites W2088522209 @default.
- W2169666986 cites W2091051479 @default.
- W2169666986 cites W2094266102 @default.
- W2169666986 cites W2096037177 @default.
- W2169666986 cites W2108864993 @default.
- W2169666986 cites W2110613902 @default.
- W2169666986 cites W2110799222 @default.
- W2169666986 cites W2121926190 @default.
- W2169666986 cites W2122578424 @default.
- W2169666986 cites W2126545892 @default.
- W2169666986 cites W2127521842 @default.
- W2169666986 cites W2135359012 @default.
- W2169666986 cites W2137470957 @default.
- W2169666986 cites W2143767986 @default.
- W2169666986 cites W2148736102 @default.
- W2169666986 cites W2154656658 @default.
- W2169666986 cites W2162924288 @default.
- W2169666986 cites W2165394332 @default.
- W2169666986 cites W2166567204 @default.
- W2169666986 cites W2166692637 @default.
- W2169666986 cites W2168950263 @default.
- W2169666986 cites W2181387605 @default.
- W2169666986 cites W2212178433 @default.
- W2169666986 cites W2323358117 @default.
- W2169666986 cites W2337588948 @default.
- W2169666986 cites W2514388127 @default.
- W2169666986 cites W2607481175 @default.
- W2169666986 cites W2900496898 @default.
- W2169666986 cites W3107671790 @default.
- W2169666986 cites W3112654685 @default.
- W2169666986 cites W3124795791 @default.
- W2169666986 cites W3124948491 @default.
- W2169666986 cites W3204022678 @default.
- W2169666986 cites W3212837158 @default.
- W2169666986 cites W595159355 @default.
- W2169666986 cites W628706982 @default.
- W2169666986 cites W89187651 @default.
- W2169666986 cites W2798541510 @default.
- W2169666986 doi "https://doi.org/10.2113/econgeo.106.8.1399" @default.
- W2169666986 hasPublicationYear "2011" @default.
- W2169666986 type Work @default.
- W2169666986 sameAs 2169666986 @default.
- W2169666986 citedByCount "128" @default.
- W2169666986 countsByYear W21696669862013 @default.
- W2169666986 countsByYear W21696669862014 @default.
- W2169666986 countsByYear W21696669862015 @default.
- W2169666986 countsByYear W21696669862016 @default.
- W2169666986 countsByYear W21696669862017 @default.
- W2169666986 countsByYear W21696669862018 @default.
- W2169666986 countsByYear W21696669862019 @default.
- W2169666986 countsByYear W21696669862020 @default.
- W2169666986 countsByYear W21696669862021 @default.
- W2169666986 countsByYear W21696669862022 @default.
- W2169666986 countsByYear W21696669862023 @default.
- W2169666986 crossrefType "journal-article" @default.
- W2169666986 hasAuthorship W2169666986A5018048527 @default.
- W2169666986 hasAuthorship W2169666986A5033940572 @default.
- W2169666986 hasAuthorship W2169666986A5058793595 @default.
- W2169666986 hasAuthorship W2169666986A5059441394 @default.