Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169680112> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2169680112 abstract "Rapid identification of deficiencies in major elements using spectral characteristics would be a useful tool in precision farming and in other nutrient intensive agricultural production systems such as those proposed for long term space missions. A Multilayer Perceptron (MLP) neural network and backpropagation algorithm was used to discriminate between control leaves of wheat (Triticum aestivum L.) and those deficient in nitrogen (N), phosphorus (P), potassium (K), and calcium (Ca) using hyperspectral data. The network consisted of three layers (input, hidden, and output) with spectral reflectance of the leaves in wavelengths 401 nm to 770 nm as the input layer and the quantified nutrient concentrations of each element as the output layer. Based upon the values of actual nutrient concentrations (ppm), plants were classified as either deficient or normal. Wheat plants were grown for /spl sim/100 d under both hydroponic conditions in the greenhouse and semi-hydroponic conditions in a growth chamber using Hoagland's complete nutrient solution with selected elements removed to induce specific nutrient deficiencies. Control plants received complete nutrient solutions. The MLP model was trained and tested successfully within 1000 epochs as the MSE of the sample training curve approached zero. The back propagation algorithm performed well with the following accuracies for the classification model: N 90.9%, P 100%, K 90%, and Ca 100%. Using the regression model, the following accuracies were obtained: N 93.0%, P 87.2%, K 91.9%, and Ca 97.4%. This affirms the potential of using spectral data coupled with either a classification or regression neural network models to identify quickly leaves deficient in these four major elements so that remedial applications of those nutrients can be made before the crop is substantially impacted." @default.
- W2169680112 created "2016-06-24" @default.
- W2169680112 creator A5061573303 @default.
- W2169680112 creator A5076477331 @default.
- W2169680112 date "2003-06-26" @default.
- W2169680112 modified "2023-10-18" @default.
- W2169680112 title "Use of neural networks to discriminate between control leaves of wheat or those deficient in nitrogen, phosphorus, potassium, and calcium using spectral data" @default.
- W2169680112 cites W1525481129 @default.
- W2169680112 cites W1560770548 @default.
- W2169680112 cites W1577441875 @default.
- W2169680112 cites W1984392104 @default.
- W2169680112 cites W2043174481 @default.
- W2169680112 cites W2108433997 @default.
- W2169680112 cites W2117812871 @default.
- W2169680112 cites W2124776405 @default.
- W2169680112 cites W2317253739 @default.
- W2169680112 cites W2574277671 @default.
- W2169680112 cites W282155574 @default.
- W2169680112 cites W3216089686 @default.
- W2169680112 cites W99436796 @default.
- W2169680112 doi "https://doi.org/10.1109/wac.2002.1049520" @default.
- W2169680112 hasPublicationYear "2003" @default.
- W2169680112 type Work @default.
- W2169680112 sameAs 2169680112 @default.
- W2169680112 citedByCount "0" @default.
- W2169680112 crossrefType "proceedings-article" @default.
- W2169680112 hasAuthorship W2169680112A5061573303 @default.
- W2169680112 hasAuthorship W2169680112A5076477331 @default.
- W2169680112 hasConcept C142796444 @default.
- W2169680112 hasConcept C154945302 @default.
- W2169680112 hasConcept C155032097 @default.
- W2169680112 hasConcept C159078339 @default.
- W2169680112 hasConcept C178790620 @default.
- W2169680112 hasConcept C185592680 @default.
- W2169680112 hasConcept C32198211 @default.
- W2169680112 hasConcept C33923547 @default.
- W2169680112 hasConcept C39432304 @default.
- W2169680112 hasConcept C41008148 @default.
- W2169680112 hasConcept C50644808 @default.
- W2169680112 hasConcept C510538283 @default.
- W2169680112 hasConcept C517785266 @default.
- W2169680112 hasConcept C537208039 @default.
- W2169680112 hasConcept C6557445 @default.
- W2169680112 hasConcept C86803240 @default.
- W2169680112 hasConceptScore W2169680112C142796444 @default.
- W2169680112 hasConceptScore W2169680112C154945302 @default.
- W2169680112 hasConceptScore W2169680112C155032097 @default.
- W2169680112 hasConceptScore W2169680112C159078339 @default.
- W2169680112 hasConceptScore W2169680112C178790620 @default.
- W2169680112 hasConceptScore W2169680112C185592680 @default.
- W2169680112 hasConceptScore W2169680112C32198211 @default.
- W2169680112 hasConceptScore W2169680112C33923547 @default.
- W2169680112 hasConceptScore W2169680112C39432304 @default.
- W2169680112 hasConceptScore W2169680112C41008148 @default.
- W2169680112 hasConceptScore W2169680112C50644808 @default.
- W2169680112 hasConceptScore W2169680112C510538283 @default.
- W2169680112 hasConceptScore W2169680112C517785266 @default.
- W2169680112 hasConceptScore W2169680112C537208039 @default.
- W2169680112 hasConceptScore W2169680112C6557445 @default.
- W2169680112 hasConceptScore W2169680112C86803240 @default.
- W2169680112 hasLocation W21696801121 @default.
- W2169680112 hasOpenAccess W2169680112 @default.
- W2169680112 hasPrimaryLocation W21696801121 @default.
- W2169680112 hasRelatedWork W1599294871 @default.
- W2169680112 hasRelatedWork W1978125533 @default.
- W2169680112 hasRelatedWork W1984782012 @default.
- W2169680112 hasRelatedWork W2075882144 @default.
- W2169680112 hasRelatedWork W2087967966 @default.
- W2169680112 hasRelatedWork W2370197544 @default.
- W2169680112 hasRelatedWork W3131611319 @default.
- W2169680112 hasRelatedWork W3204521255 @default.
- W2169680112 hasRelatedWork W4210581263 @default.
- W2169680112 hasRelatedWork W7986934 @default.
- W2169680112 isParatext "false" @default.
- W2169680112 isRetracted "false" @default.
- W2169680112 magId "2169680112" @default.
- W2169680112 workType "article" @default.