Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169780180> ?p ?o ?g. }
- W2169780180 endingPage "1110" @default.
- W2169780180 startingPage "1087" @default.
- W2169780180 abstract "Late Devonian porphyry Cu-Au deposits within the Oyu Tolgoi mineral district, Mongolia, occur in a north-northeast–trending zone 22 km long. They are related to quartz monzodiorite intrusions, and hosted by augite basalt lavas. The porphyry systems have been preserved beneath overturned and allochthonous stratigraphic sequences and geologic relationships suggest that fold-thrust belt deformation and tectonic burial occurred soon after their formation. Eight known separate porphyry centers currently contain a measured and indicated resource of 1,390 Mt at 1.33 wt percent Cu and 0.47 g/t Au, and an inferred resource of 2,200 Mt at 0.83 wt percent Cu and 0.37 g/t Au (at 0.6 wt % Cu equiv cutoff). Advanced argillic alteration is present for 6 km along a north-northeast trend and is characterized by minerals that include andalusite, corundum, diaspore, residual quartz, alunite plus aluminum-phosphate-sulfate minerals, zunyite, topaz, pyrophyllite, kaolinite, anhydrite, gypsum, and dickite but is dominated by pyrophyllite. This alteration is exposed at surface in the Central deposit and in the subsurface between 50 to 1,500 m depth at Hugo Dummett South and North deposits. The advanced argillic zone at the Hugo Dummett deposits closely envelopes high-grade porphyry Cu-Au mineralization, and overprints a deep zone of sericitic alteration.Mineralogical investigations show that pyrophyllite replaces fine-grained muscovite as coarse crystals (up to 25μm long), or replaces coarse muscovite crystals (50 μm long) along cleavage. Muscovite (δ18O = 6.7–10.4‰, δD = −116 to −92‰, n =13) and pyrophyllite (δ18O = 5.9–12.2‰, δD = −122 to −87‰, n = 28) have similar measured isotopic compositions. The calculated parent fluid compositions for all phyllosilicate minerals (muscovite, chlorite, pyrophyllite: δ18OH2O = 1–7.3‰, δDH2O = −102 to −67‰) suggest they were predominantly magmatic with a minor component of meteoric water. The composition of younger dickite (δ18O = −3.2 to +5.7‰, δD = −165 to −129‰, n = 13) shows evidence of magmatic fluid mixing with meteoric water, and provides an estimate of δD = −160 per mil for Late Devonian meteoric water. Sulfides (δ34S = −16 to −1.4‰) are isotopically light, whereas sulfates (δ34S = 4.2–17.9‰) are heavy, and the distribution suggest that initial fluids were SO2-dominant and ratios of reduced to oxidized sulfur species of fluids were buffered at near 1:1.Alunite is related to condensed magmatic vapor (δ18O(SO4) = 7.1–20.1‰ ( n = 14), δD = −92 to −37‰ ( n = 13), δ34S = 8–17.9‰ ( n = 18)) with a component of meteoric water, and contrasts in O and H isotope values from pyrophyllite, which is similar to muscovite. Pyrophyllite at shallow levels replaces earlier advanced argillic minerals, including alunite, whereas at deep levels it replaces muscovite in quartz monzodiorite, or chlorite-muscovite-illite (after biotite) in basaltic wall rocks. Field relationships, mineralogy, and stable isotopes suggest that pyrophyllite is derived from late magmatic-hydrothermal fluids during cooling." @default.
- W2169780180 created "2016-06-24" @default.
- W2169780180 creator A5004043908 @default.
- W2169780180 creator A5043531351 @default.
- W2169780180 creator A5049965302 @default.
- W2169780180 creator A5053877531 @default.
- W2169780180 date "2009-12-01" @default.
- W2169780180 modified "2023-10-17" @default.
- W2169780180 title "The Sericitic to Advanced Argillic Transition: Stable Isotope and Mineralogical Characteristics from the Hugo Dummett Porphyry Cu-Au Deposit, Oyu Tolgoi District, Mongolia" @default.
- W2169780180 cites W1952956830 @default.
- W2169780180 cites W1965260190 @default.
- W2169780180 cites W1972077181 @default.
- W2169780180 cites W1975675283 @default.
- W2169780180 cites W1982355893 @default.
- W2169780180 cites W1986890199 @default.
- W2169780180 cites W1990581568 @default.
- W2169780180 cites W1991266495 @default.
- W2169780180 cites W1996361224 @default.
- W2169780180 cites W2008202850 @default.
- W2169780180 cites W2010724918 @default.
- W2169780180 cites W2014541757 @default.
- W2169780180 cites W2016868493 @default.
- W2169780180 cites W2016927138 @default.
- W2169780180 cites W2036841295 @default.
- W2169780180 cites W2041519253 @default.
- W2169780180 cites W2053364953 @default.
- W2169780180 cites W2055500440 @default.
- W2169780180 cites W2057235881 @default.
- W2169780180 cites W2058173185 @default.
- W2169780180 cites W2058881736 @default.
- W2169780180 cites W2059927840 @default.
- W2169780180 cites W2064563658 @default.
- W2169780180 cites W2069243531 @default.
- W2169780180 cites W2072191315 @default.
- W2169780180 cites W2074139688 @default.
- W2169780180 cites W2078192332 @default.
- W2169780180 cites W2078320350 @default.
- W2169780180 cites W2086543775 @default.
- W2169780180 cites W2091666864 @default.
- W2169780180 cites W2093765579 @default.
- W2169780180 cites W2100998381 @default.
- W2169780180 cites W2105382028 @default.
- W2169780180 cites W2108092985 @default.
- W2169780180 cites W2108353466 @default.
- W2169780180 cites W2109763519 @default.
- W2169780180 cites W2127521842 @default.
- W2169780180 cites W2131128362 @default.
- W2169780180 cites W2139131101 @default.
- W2169780180 cites W2141042890 @default.
- W2169780180 cites W2143047176 @default.
- W2169780180 cites W2152675527 @default.
- W2169780180 cites W2153415869 @default.
- W2169780180 cites W2159964821 @default.
- W2169780180 cites W2161088329 @default.
- W2169780180 cites W2162425860 @default.
- W2169780180 cites W2162638162 @default.
- W2169780180 cites W2169746538 @default.
- W2169780180 cites W2171050848 @default.
- W2169780180 cites W2337292314 @default.
- W2169780180 cites W2554295816 @default.
- W2169780180 cites W2625608614 @default.
- W2169780180 cites W2900496898 @default.
- W2169780180 cites W2981546771 @default.
- W2169780180 cites W3101645604 @default.
- W2169780180 cites W397154607 @default.
- W2169780180 cites W645214514 @default.
- W2169780180 doi "https://doi.org/10.2113/gsecongeo.104.8.1087" @default.
- W2169780180 hasPublicationYear "2009" @default.
- W2169780180 type Work @default.
- W2169780180 sameAs 2169780180 @default.
- W2169780180 citedByCount "53" @default.
- W2169780180 countsByYear W21697801802012 @default.
- W2169780180 countsByYear W21697801802013 @default.
- W2169780180 countsByYear W21697801802014 @default.
- W2169780180 countsByYear W21697801802015 @default.
- W2169780180 countsByYear W21697801802016 @default.
- W2169780180 countsByYear W21697801802017 @default.
- W2169780180 countsByYear W21697801802018 @default.
- W2169780180 countsByYear W21697801802019 @default.
- W2169780180 countsByYear W21697801802020 @default.
- W2169780180 countsByYear W21697801802021 @default.
- W2169780180 countsByYear W21697801802022 @default.
- W2169780180 countsByYear W21697801802023 @default.
- W2169780180 crossrefType "journal-article" @default.
- W2169780180 hasAuthorship W2169780180A5004043908 @default.
- W2169780180 hasAuthorship W2169780180A5043531351 @default.
- W2169780180 hasAuthorship W2169780180A5049965302 @default.
- W2169780180 hasAuthorship W2169780180A5053877531 @default.
- W2169780180 hasConcept C120806208 @default.
- W2169780180 hasConcept C127313418 @default.
- W2169780180 hasConcept C166957645 @default.
- W2169780180 hasConcept C17409809 @default.
- W2169780180 hasConcept C191935318 @default.
- W2169780180 hasConcept C192241223 @default.
- W2169780180 hasConcept C205649164 @default.
- W2169780180 hasConcept C2781427754 @default.
- W2169780180 hasConcept C3017660400 @default.
- W2169780180 hasConceptScore W2169780180C120806208 @default.