Matches in SemOpenAlex for { <https://semopenalex.org/work/W2169984600> ?p ?o ?g. }
- W2169984600 endingPage "510" @default.
- W2169984600 startingPage "495" @default.
- W2169984600 abstract "Chromitite layers are common in large mafic layered intrusions. A widely accepted hypothesis holds that the chromitites formed as a consequence of injection and mixing of a chemically relatively primitive magma into a chamber occupied by more evolved magma. This forces supersaturation of the mixture in chromite, which upon crystallization accumulates on the magma chamber floor to form a nearly monomineralic layer. To evaluate this and other genetic hypotheses to explain the chromitite layers of the Bushveld Complex, we have conducted a detailed study of the silicate-rich layers immediately above and below the UG2 chromitite and another chromitite layer lower in the stratigraphic section, at the top of the Lower Critical Zone. The UG2 chromitite is well known because it is enriched in the platinum-group elements and extends for nearly the entire 400 km strike length of the eastern and western limbs of the Bushveld Complex. Where we have studied the sequence in the central sector of the eastern Bushveld, the UG2 chromitite is embedded in a massive, 25 m thick plagioclase pyroxenite consisting of 60–70 vol. % granular (cumulus) orthopyroxene with interstitial plagioclase, clinopyroxene, and accessory phases. Throughout the entire pyroxenite layer orthopyroxene exhibits no stratigraphic variations in major or minor elements (Mg-number = 79·3–81·1). However, the 6 m of pyroxenite below the chromitite (footwall pyroxenite) is petrographically distinct from the 17 m of hanging wall pyroxenite. Among the differences are (1) phlogopite, K-feldspar, and quartz are ubiquitous and locally abundant in the footwall pyroxenite but generally absent in the hanging wall pyroxenite, and (2) plagioclase in the footwall pyroxenite is distinctly more sodic and potassic than that in the hanging wall pyroxenite (An45–60 vs An70–75). The Lower Critical Zone chromitite is also hosted by orthopyroxenite, but in this case the rocks above and below the chromitite are texturally and compositionally identical. For the UG2, we interpret the interstitial assemblage of the footwall pyroxenite to represent either interstitial melt that formed in situ by fractional crystallization or chemically evolved melt that infiltrated from below. In either case, the melt was trapped in the footwall pyroxenite because the overlying UG2 chromitite was less permeable. If this interpretation is correct, the footwall and hanging wall pyroxenites were essentially identical when they initially formed. However, all the models of chromitite formation that call on mixing of magmas of different compositions or on other processes that result in changes in the chemical or physical conditions attendant on the magma predict that the rocks immediately above and below the chromitite layers should be different. This leads us to propose that the Bushveld chromitites formed by injection of new batches of magma with a composition similar to the resident magma but carrying a suspended load of chromite crystals. The model is supported by the common observation of phenocrysts, including those of chromite, in lavas and hypabyssal rocks, and by chromite abundances in lavas and peridotite sills associated with the Bushveld Complex indicating that geologically reasonable amounts of magma can account for even the massive, 70 cm thick UG2 chromitite. The model requires some crystallization to have occurred in a deeper chamber, for which there is ample geochemical evidence." @default.
- W2169984600 created "2016-06-24" @default.
- W2169984600 creator A5005510368 @default.
- W2169984600 creator A5065721013 @default.
- W2169984600 date "2006-11-29" @default.
- W2169984600 modified "2023-10-16" @default.
- W2169984600 title "Origin of the UG2 chromitite layer, Bushveld Complex" @default.
- W2169984600 cites W121687996 @default.
- W2169984600 cites W1607247829 @default.
- W2169984600 cites W1965999150 @default.
- W2169984600 cites W1980456727 @default.
- W2169984600 cites W1985003499 @default.
- W2169984600 cites W1985558610 @default.
- W2169984600 cites W1988388558 @default.
- W2169984600 cites W1988948806 @default.
- W2169984600 cites W1991445735 @default.
- W2169984600 cites W1996988503 @default.
- W2169984600 cites W2002005281 @default.
- W2169984600 cites W2004918923 @default.
- W2169984600 cites W2006263859 @default.
- W2169984600 cites W2006654535 @default.
- W2169984600 cites W2007060519 @default.
- W2169984600 cites W2011360320 @default.
- W2169984600 cites W2019535197 @default.
- W2169984600 cites W2022135249 @default.
- W2169984600 cites W2028795489 @default.
- W2169984600 cites W2031258408 @default.
- W2169984600 cites W2037155919 @default.
- W2169984600 cites W2038097001 @default.
- W2169984600 cites W2041258049 @default.
- W2169984600 cites W2042692134 @default.
- W2169984600 cites W2045689040 @default.
- W2169984600 cites W2053483240 @default.
- W2169984600 cites W2065462446 @default.
- W2169984600 cites W2066267518 @default.
- W2169984600 cites W2066563289 @default.
- W2169984600 cites W2068250266 @default.
- W2169984600 cites W2075150574 @default.
- W2169984600 cites W2083585734 @default.
- W2169984600 cites W2087223628 @default.
- W2169984600 cites W2088516428 @default.
- W2169984600 cites W2091316274 @default.
- W2169984600 cites W2097756509 @default.
- W2169984600 cites W2098508085 @default.
- W2169984600 cites W2098929488 @default.
- W2169984600 cites W2102148551 @default.
- W2169984600 cites W2104613621 @default.
- W2169984600 cites W2104780445 @default.
- W2169984600 cites W2108364049 @default.
- W2169984600 cites W2109353358 @default.
- W2169984600 cites W2111240109 @default.
- W2169984600 cites W2118309612 @default.
- W2169984600 cites W2120717080 @default.
- W2169984600 cites W2131033058 @default.
- W2169984600 cites W2132860549 @default.
- W2169984600 cites W2137006407 @default.
- W2169984600 cites W2143989486 @default.
- W2169984600 cites W2148423008 @default.
- W2169984600 cites W2153024854 @default.
- W2169984600 cites W2158818364 @default.
- W2169984600 cites W2160368579 @default.
- W2169984600 cites W2161484974 @default.
- W2169984600 cites W2307097205 @default.
- W2169984600 cites W2313328138 @default.
- W2169984600 cites W2318857417 @default.
- W2169984600 cites W2334515619 @default.
- W2169984600 cites W2995301094 @default.
- W2169984600 cites W805928198 @default.
- W2169984600 doi "https://doi.org/10.1093/petrology/egl069" @default.
- W2169984600 hasPublicationYear "2006" @default.
- W2169984600 type Work @default.
- W2169984600 sameAs 2169984600 @default.
- W2169984600 citedByCount "185" @default.
- W2169984600 countsByYear W21699846002012 @default.
- W2169984600 countsByYear W21699846002013 @default.
- W2169984600 countsByYear W21699846002014 @default.
- W2169984600 countsByYear W21699846002015 @default.
- W2169984600 countsByYear W21699846002016 @default.
- W2169984600 countsByYear W21699846002017 @default.
- W2169984600 countsByYear W21699846002018 @default.
- W2169984600 countsByYear W21699846002019 @default.
- W2169984600 countsByYear W21699846002020 @default.
- W2169984600 countsByYear W21699846002021 @default.
- W2169984600 countsByYear W21699846002022 @default.
- W2169984600 countsByYear W21699846002023 @default.
- W2169984600 crossrefType "journal-article" @default.
- W2169984600 hasAuthorship W2169984600A5005510368 @default.
- W2169984600 hasAuthorship W2169984600A5065721013 @default.
- W2169984600 hasBestOaLocation W21699846001 @default.
- W2169984600 hasConcept C11872896 @default.
- W2169984600 hasConcept C120806208 @default.
- W2169984600 hasConcept C127313418 @default.
- W2169984600 hasConcept C139347428 @default.
- W2169984600 hasConcept C151730666 @default.
- W2169984600 hasConcept C161509811 @default.
- W2169984600 hasConcept C161790260 @default.
- W2169984600 hasConcept C167284885 @default.
- W2169984600 hasConcept C17409809 @default.