Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170097984> ?p ?o ?g. }
- W2170097984 endingPage "215" @default.
- W2170097984 startingPage "203" @default.
- W2170097984 abstract "An inversion of linked radiative transfer models (RTM) through artificial neural networks (ANN) was applied to MODIS data to retrieve vegetation canopy water content (CWC). The estimates were calibrated and validated using water retrievals from AVIRIS data from study sites located around the United States that included a wide range of environmental conditions. The ANN algorithm showed good performance across different vegetation types, with high correlations and consistent determination coefficients. The approach outperformed a multiple linear regression approach used to independently retrieve the same variable. The calibrated algorithm was then applied at the MODIS 500 m scale to follow changes in CWC for the year 2005 across the continental United States, subdivided into three vegetation types (grassland, shrubland, and forest). The ANN estimates of CWC correlated well with rainfall, indicating a strong ecological response. The high correlations suggest that the inversion of RTM through an ANN provide a realistic basis for multi-temporal assessments of CWC over wide areas for continental and global studies." @default.
- W2170097984 created "2016-06-24" @default.
- W2170097984 creator A5039853039 @default.
- W2170097984 creator A5043600180 @default.
- W2170097984 creator A5057500770 @default.
- W2170097984 creator A5074462156 @default.
- W2170097984 creator A5079194443 @default.
- W2170097984 date "2008-01-15" @default.
- W2170097984 modified "2023-10-07" @default.
- W2170097984 title "Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA☆" @default.
- W2170097984 cites W1228197641 @default.
- W2170097984 cites W139150281 @default.
- W2170097984 cites W1509735053 @default.
- W2170097984 cites W1513387103 @default.
- W2170097984 cites W1608620274 @default.
- W2170097984 cites W1662323679 @default.
- W2170097984 cites W188908432 @default.
- W2170097984 cites W1964033783 @default.
- W2170097984 cites W1969010087 @default.
- W2170097984 cites W1969548928 @default.
- W2170097984 cites W1972539809 @default.
- W2170097984 cites W1972664953 @default.
- W2170097984 cites W1974110440 @default.
- W2170097984 cites W1978617972 @default.
- W2170097984 cites W1981535710 @default.
- W2170097984 cites W1988906717 @default.
- W2170097984 cites W1990409457 @default.
- W2170097984 cites W1994378716 @default.
- W2170097984 cites W1995206435 @default.
- W2170097984 cites W1996913350 @default.
- W2170097984 cites W1998718573 @default.
- W2170097984 cites W2024039740 @default.
- W2170097984 cites W2028170210 @default.
- W2170097984 cites W2029647802 @default.
- W2170097984 cites W2030106896 @default.
- W2170097984 cites W2038412351 @default.
- W2170097984 cites W2041139590 @default.
- W2170097984 cites W2049398443 @default.
- W2170097984 cites W2050417251 @default.
- W2170097984 cites W2053178447 @default.
- W2170097984 cites W2055842947 @default.
- W2170097984 cites W2060347661 @default.
- W2170097984 cites W2062698012 @default.
- W2170097984 cites W2064632414 @default.
- W2170097984 cites W2065191898 @default.
- W2170097984 cites W2066612219 @default.
- W2170097984 cites W2067841380 @default.
- W2170097984 cites W2071185249 @default.
- W2170097984 cites W2074084796 @default.
- W2170097984 cites W2087404012 @default.
- W2170097984 cites W2087875510 @default.
- W2170097984 cites W2088295889 @default.
- W2170097984 cites W2090474171 @default.
- W2170097984 cites W2104588681 @default.
- W2170097984 cites W2108582080 @default.
- W2170097984 cites W2112732795 @default.
- W2170097984 cites W2113024036 @default.
- W2170097984 cites W2113410727 @default.
- W2170097984 cites W2116743998 @default.
- W2170097984 cites W2119371417 @default.
- W2170097984 cites W2122172506 @default.
- W2170097984 cites W2123505986 @default.
- W2170097984 cites W2129206446 @default.
- W2170097984 cites W2133272607 @default.
- W2170097984 cites W2145984932 @default.
- W2170097984 cites W2148883373 @default.
- W2170097984 cites W2149461430 @default.
- W2170097984 cites W2159580785 @default.
- W2170097984 cites W2161881124 @default.
- W2170097984 cites W2162226201 @default.
- W2170097984 cites W2162899308 @default.
- W2170097984 cites W2166312616 @default.
- W2170097984 cites W2171063647 @default.
- W2170097984 cites W2172119466 @default.
- W2170097984 cites W2224070395 @default.
- W2170097984 cites W273944559 @default.
- W2170097984 cites W3135467701 @default.
- W2170097984 cites W47451188 @default.
- W2170097984 cites W4773530 @default.
- W2170097984 cites W82068691 @default.
- W2170097984 cites W1599458628 @default.
- W2170097984 doi "https://doi.org/10.1016/j.rse.2007.04.013" @default.
- W2170097984 hasPublicationYear "2008" @default.
- W2170097984 type Work @default.
- W2170097984 sameAs 2170097984 @default.
- W2170097984 citedByCount "142" @default.
- W2170097984 countsByYear W21700979842012 @default.
- W2170097984 countsByYear W21700979842013 @default.
- W2170097984 countsByYear W21700979842014 @default.
- W2170097984 countsByYear W21700979842015 @default.
- W2170097984 countsByYear W21700979842016 @default.
- W2170097984 countsByYear W21700979842017 @default.
- W2170097984 countsByYear W21700979842018 @default.
- W2170097984 countsByYear W21700979842019 @default.
- W2170097984 countsByYear W21700979842020 @default.
- W2170097984 countsByYear W21700979842021 @default.
- W2170097984 countsByYear W21700979842022 @default.
- W2170097984 countsByYear W21700979842023 @default.