Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170471837> ?p ?o ?g. }
- W2170471837 endingPage "96" @default.
- W2170471837 startingPage "93" @default.
- W2170471837 abstract "Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics." @default.
- W2170471837 created "2016-06-24" @default.
- W2170471837 creator A5028845140 @default.
- W2170471837 creator A5053192926 @default.
- W2170471837 date "2001-10-05" @default.
- W2170471837 modified "2023-10-18" @default.
- W2170471837 title "Protein Structure Prediction and Structural Genomics" @default.
- W2170471837 cites W1534270226 @default.
- W2170471837 cites W1582255757 @default.
- W2170471837 cites W1593454066 @default.
- W2170471837 cites W1601251682 @default.
- W2170471837 cites W1603416910 @default.
- W2170471837 cites W1604726175 @default.
- W2170471837 cites W1956332901 @default.
- W2170471837 cites W1965860531 @default.
- W2170471837 cites W1969211070 @default.
- W2170471837 cites W1970197953 @default.
- W2170471837 cites W1972436355 @default.
- W2170471837 cites W1980374511 @default.
- W2170471837 cites W1981494014 @default.
- W2170471837 cites W1996307860 @default.
- W2170471837 cites W2010458285 @default.
- W2170471837 cites W2011734083 @default.
- W2170471837 cites W2013238066 @default.
- W2170471837 cites W2015390241 @default.
- W2170471837 cites W2017727500 @default.
- W2170471837 cites W2020481171 @default.
- W2170471837 cites W2026185422 @default.
- W2170471837 cites W2028113949 @default.
- W2170471837 cites W2033227089 @default.
- W2170471837 cites W2047444442 @default.
- W2170471837 cites W2059067075 @default.
- W2170471837 cites W2065283382 @default.
- W2170471837 cites W2114520383 @default.
- W2170471837 cites W2115230913 @default.
- W2170471837 cites W2117164735 @default.
- W2170471837 cites W2136615212 @default.
- W2170471837 cites W2144130117 @default.
- W2170471837 cites W2158580600 @default.
- W2170471837 cites W2158714788 @default.
- W2170471837 cites W2163333444 @default.
- W2170471837 cites W2166924104 @default.
- W2170471837 cites W4234019757 @default.
- W2170471837 cites W4248064674 @default.
- W2170471837 doi "https://doi.org/10.1126/science.1065659" @default.
- W2170471837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11588250" @default.
- W2170471837 hasPublicationYear "2001" @default.
- W2170471837 type Work @default.
- W2170471837 sameAs 2170471837 @default.
- W2170471837 citedByCount "1426" @default.
- W2170471837 countsByYear W21704718372012 @default.
- W2170471837 countsByYear W21704718372013 @default.
- W2170471837 countsByYear W21704718372014 @default.
- W2170471837 countsByYear W21704718372015 @default.
- W2170471837 countsByYear W21704718372016 @default.
- W2170471837 countsByYear W21704718372017 @default.
- W2170471837 countsByYear W21704718372018 @default.
- W2170471837 countsByYear W21704718372019 @default.
- W2170471837 countsByYear W21704718372020 @default.
- W2170471837 countsByYear W21704718372021 @default.
- W2170471837 countsByYear W21704718372022 @default.
- W2170471837 countsByYear W21704718372023 @default.
- W2170471837 crossrefType "journal-article" @default.
- W2170471837 hasAuthorship W2170471837A5028845140 @default.
- W2170471837 hasAuthorship W2170471837A5053192926 @default.
- W2170471837 hasConcept C103278499 @default.
- W2170471837 hasConcept C104317684 @default.
- W2170471837 hasConcept C111364199 @default.
- W2170471837 hasConcept C115961682 @default.
- W2170471837 hasConcept C136475424 @default.
- W2170471837 hasConcept C139489369 @default.
- W2170471837 hasConcept C141231307 @default.
- W2170471837 hasConcept C154945302 @default.
- W2170471837 hasConcept C167625842 @default.
- W2170471837 hasConcept C18051474 @default.
- W2170471837 hasConcept C189206191 @default.
- W2170471837 hasConcept C192772702 @default.
- W2170471837 hasConcept C200307862 @default.
- W2170471837 hasConcept C207060522 @default.
- W2170471837 hasConcept C2778112365 @default.
- W2170471837 hasConcept C2986374874 @default.
- W2170471837 hasConcept C41008148 @default.
- W2170471837 hasConcept C41584329 @default.
- W2170471837 hasConcept C45475804 @default.
- W2170471837 hasConcept C45484198 @default.
- W2170471837 hasConcept C47701112 @default.
- W2170471837 hasConcept C54355233 @default.
- W2170471837 hasConcept C55493867 @default.
- W2170471837 hasConcept C61053724 @default.
- W2170471837 hasConcept C70721500 @default.
- W2170471837 hasConcept C86803240 @default.
- W2170471837 hasConceptScore W2170471837C103278499 @default.
- W2170471837 hasConceptScore W2170471837C104317684 @default.
- W2170471837 hasConceptScore W2170471837C111364199 @default.
- W2170471837 hasConceptScore W2170471837C115961682 @default.
- W2170471837 hasConceptScore W2170471837C136475424 @default.
- W2170471837 hasConceptScore W2170471837C139489369 @default.
- W2170471837 hasConceptScore W2170471837C141231307 @default.