Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170524533> ?p ?o ?g. }
- W2170524533 abstract "The focus of this thesis is to develop computational techniques for analysis of protein structures. We model protein structures as points in 3-dimensional space which in turn are modeled as weighted graphs. The problem of protein structure comparison is posed as a weighted graph matching problem and an algorithm motivated from the spectral graph matching techniques is developed. The thesis also proposes novel similarity measures by deriving kernel functions. These kernel functions allow the data to be mapped to a suitably defined Reproducing kernel Hilbert Space(RKHS), paving the way for efficient algorithms for protein structure classification. Protein structure comparison (structure alignment)is a classical method of determining overall similarity between two protein structures. This problem can be posed as the approximate weighted subgraph matching problem, which is a well known NP-Hard problem. Spectral graph matching techniques provide efficient heuristic solution for the weighted graph matching problem using eigenvectors of adjacency matrices of the graphs. We propose a novel and efficient algorithm for protein structure comparison using the notion of neighborhood preserving projections (NPP) motivated from spectral graph matching. Empirically, we demonstrate that comparing the NPPs of two protein structures gives the correct equivalences when the sizes of proteins being compared are roughly similar. Also, the resulting algorithm is 3 -20 times faster than the existing state of the art techniques. This algorithm was used for retrieval of protein structures from standard databases with accuracies comparable to the state of the art. A limitation of the above method is that it gives wrong results when the number of unmatched residues, also called insertions and deletions (indels), are very high. This problem was tackled by matching neighborhoods, rather than entire structures. For each pair of neighborhoods, we grow the neighborhood alignments to get alignments for entire structures. This results in a robust method that has outperformed the existing state of the art methods on standard benchmark datasets. This method was also implemented using MPI on a cluster for database search.Another important problem in computational biology is classification of protein structures into classes exhibiting high structural similarity. Many manual and semi-automatic structural classification databases exist. Kernel methods along with support vector machines (SVM) have proved to be a robust and principled tool for classification. We have proposed novel positive semidefinite kernel functions on protein structures based on spatial neighborhoods. The kernels were derived using a general technique called convolution kernel, and showed to be related to the spectral alignment score in a limiting case. These kernels have outperformed the existing tools when validated on a well known manual classification scheme called SCOP. The kernels were designed keeping the general problem of capturing structural similarity in mind, and have been…" @default.
- W2170524533 created "2016-06-24" @default.
- W2170524533 creator A5046910575 @default.
- W2170524533 date "2008-08-01" @default.
- W2170524533 modified "2023-09-24" @default.
- W2170524533 title "Computational Protein Structure Analysis: Kernel and Spectral Methods" @default.
- W2170524533 cites W14071851 @default.
- W2170524533 cites W1480928214 @default.
- W2170524533 cites W1481933820 @default.
- W2170524533 cites W1510073064 @default.
- W2170524533 cites W1510161841 @default.
- W2170524533 cites W1520321564 @default.
- W2170524533 cites W1540155273 @default.
- W2170524533 cites W1542574673 @default.
- W2170524533 cites W1559074274 @default.
- W2170524533 cites W1576213419 @default.
- W2170524533 cites W1578099820 @default.
- W2170524533 cites W1675272512 @default.
- W2170524533 cites W1762430620 @default.
- W2170524533 cites W1835509607 @default.
- W2170524533 cites W1916412816 @default.
- W2170524533 cites W1966521833 @default.
- W2170524533 cites W1972278541 @default.
- W2170524533 cites W1979147581 @default.
- W2170524533 cites W1979734180 @default.
- W2170524533 cites W1991115149 @default.
- W2170524533 cites W1992558926 @default.
- W2170524533 cites W1993267444 @default.
- W2170524533 cites W2000377676 @default.
- W2170524533 cites W2009836662 @default.
- W2170524533 cites W2011039300 @default.
- W2170524533 cites W2014425592 @default.
- W2170524533 cites W2014902932 @default.
- W2170524533 cites W2015403140 @default.
- W2170524533 cites W2022058405 @default.
- W2170524533 cites W2023790301 @default.
- W2170524533 cites W2031823405 @default.
- W2170524533 cites W2039444222 @default.
- W2170524533 cites W2055043387 @default.
- W2170524533 cites W2056477044 @default.
- W2170524533 cites W2067871121 @default.
- W2170524533 cites W2085277871 @default.
- W2170524533 cites W2087064593 @default.
- W2170524533 cites W2087151779 @default.
- W2170524533 cites W2096942889 @default.
- W2170524533 cites W2099438806 @default.
- W2170524533 cites W2101150485 @default.
- W2170524533 cites W2106159958 @default.
- W2170524533 cites W2108067237 @default.
- W2170524533 cites W2108182844 @default.
- W2170524533 cites W2111557120 @default.
- W2170524533 cites W2115451817 @default.
- W2170524533 cites W2117138194 @default.
- W2170524533 cites W2117730732 @default.
- W2170524533 cites W2119290215 @default.
- W2170524533 cites W2122300808 @default.
- W2170524533 cites W2124358359 @default.
- W2170524533 cites W2126016150 @default.
- W2170524533 cites W2127713198 @default.
- W2170524533 cites W2129250947 @default.
- W2170524533 cites W2130479394 @default.
- W2170524533 cites W2130891992 @default.
- W2170524533 cites W2131195071 @default.
- W2170524533 cites W2133657429 @default.
- W2170524533 cites W2134692386 @default.
- W2170524533 cites W2137146016 @default.
- W2170524533 cites W2139212933 @default.
- W2170524533 cites W2139921999 @default.
- W2170524533 cites W2143210482 @default.
- W2170524533 cites W2143366433 @default.
- W2170524533 cites W2144071905 @default.
- W2170524533 cites W2144998676 @default.
- W2170524533 cites W2145295623 @default.
- W2170524533 cites W2146588116 @default.
- W2170524533 cites W2147286743 @default.
- W2170524533 cites W2148603752 @default.
- W2170524533 cites W2150138094 @default.
- W2170524533 cites W2151417892 @default.
- W2170524533 cites W2152132697 @default.
- W2170524533 cites W2152326664 @default.
- W2170524533 cites W2153153865 @default.
- W2170524533 cites W2153635508 @default.
- W2170524533 cites W2157041524 @default.
- W2170524533 cites W2159727956 @default.
- W2170524533 cites W2159888725 @default.
- W2170524533 cites W2160167256 @default.
- W2170524533 cites W2160879227 @default.
- W2170524533 cites W2161195767 @default.
- W2170524533 cites W2163311713 @default.
- W2170524533 cites W2165874743 @default.
- W2170524533 cites W2166473218 @default.
- W2170524533 cites W2170960297 @default.
- W2170524533 cites W2296319761 @default.
- W2170524533 cites W2328947764 @default.
- W2170524533 cites W247697463 @default.
- W2170524533 cites W3023786531 @default.
- W2170524533 cites W3101749733 @default.
- W2170524533 cites W2002252750 @default.
- W2170524533 hasPublicationYear "2008" @default.
- W2170524533 type Work @default.