Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170527412> ?p ?o ?g. }
- W2170527412 endingPage "5963" @default.
- W2170527412 startingPage "5963" @default.
- W2170527412 abstract "In this tutorial we highlight the optimal working methodology for discovering novel heterogeneous catalysts using modern tools. First, we give a structure to the discovery and optimisation process, explaining its iterative nature. Then, we focus in turn on each step of catalyst synthesis, catalysts testing, integrating low-level and high-level descriptor models into the workflow, and explorative data analysis. Finally, we explain the importance of experimental and model validation, and show how by combining experimental design, descriptor modelling, and experimental validation you can increase the chances of discovering and optimising good catalysts. The basic principles are illustrated with four concrete examples: oxidative methane coupling; catalytic hydrogenation of 5-ethoxymethylfurfural; optimising bimetallic catalysts in a continuous reactor system, and linking material properties to chemisorption energies for a variety of catalysts. Based on the above examples and principles, we then return to the general case, and discuss the application of data-driven workflows in catalyst discovery and optimisation." @default.
- W2170527412 created "2016-06-24" @default.
- W2170527412 creator A5044397884 @default.
- W2170527412 creator A5077972241 @default.
- W2170527412 date "2014-01-01" @default.
- W2170527412 modified "2023-10-02" @default.
- W2170527412 title "Heterogeneous catalyst discovery using 21st century tools: a tutorial" @default.
- W2170527412 cites W1480171480 @default.
- W2170527412 cites W1969740349 @default.
- W2170527412 cites W1973426008 @default.
- W2170527412 cites W1977883925 @default.
- W2170527412 cites W1978698590 @default.
- W2170527412 cites W1982533007 @default.
- W2170527412 cites W1985620503 @default.
- W2170527412 cites W1989629546 @default.
- W2170527412 cites W2001658408 @default.
- W2170527412 cites W2003449600 @default.
- W2170527412 cites W2016366655 @default.
- W2170527412 cites W2024445226 @default.
- W2170527412 cites W2024447259 @default.
- W2170527412 cites W2035501960 @default.
- W2170527412 cites W2036283662 @default.
- W2170527412 cites W2044312206 @default.
- W2170527412 cites W2045728626 @default.
- W2170527412 cites W2049968528 @default.
- W2170527412 cites W2053878939 @default.
- W2170527412 cites W2058216363 @default.
- W2170527412 cites W2064330832 @default.
- W2170527412 cites W2067746562 @default.
- W2170527412 cites W2068896957 @default.
- W2170527412 cites W2079156751 @default.
- W2170527412 cites W2086657055 @default.
- W2170527412 cites W2087738691 @default.
- W2170527412 cites W2088400298 @default.
- W2170527412 cites W2091845508 @default.
- W2170527412 cites W2092947609 @default.
- W2170527412 cites W2093789185 @default.
- W2170527412 cites W2094367620 @default.
- W2170527412 cites W2095078766 @default.
- W2170527412 cites W2098553551 @default.
- W2170527412 cites W2100716186 @default.
- W2170527412 cites W2102561595 @default.
- W2170527412 cites W2118056980 @default.
- W2170527412 cites W2119537530 @default.
- W2170527412 cites W2119970259 @default.
- W2170527412 cites W2124907616 @default.
- W2170527412 cites W2126364600 @default.
- W2170527412 cites W2140942564 @default.
- W2170527412 cites W2141197924 @default.
- W2170527412 cites W2141287164 @default.
- W2170527412 cites W2169963292 @default.
- W2170527412 cites W2949147581 @default.
- W2170527412 cites W310491095 @default.
- W2170527412 doi "https://doi.org/10.1039/c3ra45852k" @default.
- W2170527412 hasPublicationYear "2014" @default.
- W2170527412 type Work @default.
- W2170527412 sameAs 2170527412 @default.
- W2170527412 citedByCount "49" @default.
- W2170527412 countsByYear W21705274122014 @default.
- W2170527412 countsByYear W21705274122015 @default.
- W2170527412 countsByYear W21705274122016 @default.
- W2170527412 countsByYear W21705274122017 @default.
- W2170527412 countsByYear W21705274122018 @default.
- W2170527412 countsByYear W21705274122019 @default.
- W2170527412 countsByYear W21705274122020 @default.
- W2170527412 countsByYear W21705274122021 @default.
- W2170527412 countsByYear W21705274122022 @default.
- W2170527412 countsByYear W21705274122023 @default.
- W2170527412 crossrefType "journal-article" @default.
- W2170527412 hasAuthorship W2170527412A5044397884 @default.
- W2170527412 hasAuthorship W2170527412A5077972241 @default.
- W2170527412 hasBestOaLocation W21705274121 @default.
- W2170527412 hasConcept C111919701 @default.
- W2170527412 hasConcept C127413603 @default.
- W2170527412 hasConcept C136197465 @default.
- W2170527412 hasConcept C154945302 @default.
- W2170527412 hasConcept C161790260 @default.
- W2170527412 hasConcept C175583648 @default.
- W2170527412 hasConcept C177212765 @default.
- W2170527412 hasConcept C178790620 @default.
- W2170527412 hasConcept C183696295 @default.
- W2170527412 hasConcept C185592680 @default.
- W2170527412 hasConcept C21880701 @default.
- W2170527412 hasConcept C33790079 @default.
- W2170527412 hasConcept C41008148 @default.
- W2170527412 hasConcept C43411465 @default.
- W2170527412 hasConcept C77088390 @default.
- W2170527412 hasConcept C98045186 @default.
- W2170527412 hasConceptScore W2170527412C111919701 @default.
- W2170527412 hasConceptScore W2170527412C127413603 @default.
- W2170527412 hasConceptScore W2170527412C136197465 @default.
- W2170527412 hasConceptScore W2170527412C154945302 @default.
- W2170527412 hasConceptScore W2170527412C161790260 @default.
- W2170527412 hasConceptScore W2170527412C175583648 @default.
- W2170527412 hasConceptScore W2170527412C177212765 @default.
- W2170527412 hasConceptScore W2170527412C178790620 @default.
- W2170527412 hasConceptScore W2170527412C183696295 @default.
- W2170527412 hasConceptScore W2170527412C185592680 @default.