Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170695514> ?p ?o ?g. }
- W2170695514 endingPage "624" @default.
- W2170695514 startingPage "605" @default.
- W2170695514 abstract "The formation of porphyry copper deposits requires a focused flux of magmatic fluid, expelled from a large reservoir of water-, metal-, and sulfur-rich magma. The dimensions of this usually hidden magma reservoir are difficult to determine but can be constrained by combining geophysical observations with thermal constraints and the mass balance imposed by the chemical enrichment of elements in the deposit. Here we show that an internally consistent scenario can be derived for the world-class Cu-Mo-Au deposit at Bingham Canyon (Utah, United States), which quantifies the essential characteristics, approximate dimension, and temporal evolution of a large pluton that generated the deposit. The mineralized district shows a distinct WSW-ENE–striking magnetic anomaly indicating a large intrusive body underlying the sedimentary host rocks of the Oquirrh Mountains. Modeling the deep body by geomagnetic methods is possible because of the high contrast in magnetic susceptibility between sedimentary host rocks and intrusive rocks and because a former volcanic edifice is largely eroded. Additional constraints from drilled geology and district-wide outcropping rocks, including partial demagnetization by hydrothermal alteration on the mine scale, restrict the range of possible solutions to a broadly laccolith-shaped intrusion with a volume of approximately 1,400 to 3,000 km 3 . From the roof of the laccolith, several smaller subvolcanic stocks and dikes protrude to the present surface, of which a major one is hosting the Bingham Canyon deposit. The roof of the laccolith probably lies between 2 and 3.5 km below the bottom of the present open-pit mine, and the average thickness of the laccolith is constrained between 2 and 3.5 km. Thermal modeling, using pluton dimensions derived from the geologic and geomagnetic modeling, indicates that a single laccolith with a magma volume of ~2,000 km 3 beneath Bingham would have solidified within about 230,000 years or less. Comparison of the thermal models with published high-precision geochronologic data and petrologic constraints suggests a scenario in which about 1,000 km 3 of magma was encapsulated by inward crystallization of the pluton after the preore equigranular monzonite stocks solidified and extrusive volcanism was probably terminated. This encapsulated reservoir was close to water saturation and contained approximately 150 billion metric tons (Gt) of magmatic water for subsequent closed-system fractionation and eventual fluid expulsion driving porphyry copper mineralization. Chemical mass balance shows that the known metal endowment and mapped mass of vein quartz within the deposit can be advected and precipitated by a fluid mass that is slightly smaller than the available 150 Gt of water. A conservative estimate indicates that 115 Gt of water is sufficient to precipitate all the quartz associated with successive Cu-Au-and Mo-stage veins as well as their barren precursors. According to our thermal model, approximately 250 km 3 of quartz monzonite magma with a temperature of about 690°C remained partially liquid some 215,000 years after initial intrusion of the laccolith. At that point, it expelled almost simultaneously the quartz monzonite porphyry and the main mass of accumulated fluid, generating most of the vein quartz in the quenched porphyry and the adjacent older rocks. Petrographic evidence indicates that the ore metals precipitated near the end of individual pulses of quartz veining that followed recurrent but waning pulses of porphyry intrusion. Considering published experimental solubility data as well as ore metal contents in fluid inclusions, a small fraction of the available fluid mass is sufficient to transport and precipitate all the ore metals after an initial fluid pulse precipitated most of the quartz. However, the total amount of sulfur present in the deposit, which includes Cu and Mo sulfides as well as a major addition of pyrite, would be facilitated by addition of a mafic magma input into the residual magma chamber that contained the evolved felsic magma. This magmatic injection probably triggered the emplacement of the mineralized porphyries, consistent with the more mafic composition of some of the latest porphyry dikes and the CO 2 -rich nature of ore-related fluid inclusions." @default.
- W2170695514 created "2016-06-24" @default.
- W2170695514 creator A5016246551 @default.
- W2170695514 creator A5024299583 @default.
- W2170695514 creator A5052717655 @default.
- W2170695514 creator A5085653199 @default.
- W2170695514 date "2013-05-02" @default.
- W2170695514 modified "2023-10-01" @default.
- W2170695514 title "Source Plutons Driving Porphyry Copper Ore Formation: Combining Geomagnetic Data, Thermal Constraints, and Chemical Mass Balance to Quantify the Magma Chamber Beneath the Bingham Canyon Deposit" @default.
- W2170695514 cites W1966090337 @default.
- W2170695514 cites W1969411527 @default.
- W2170695514 cites W1969599221 @default.
- W2170695514 cites W1970207830 @default.
- W2170695514 cites W1979936348 @default.
- W2170695514 cites W1980207799 @default.
- W2170695514 cites W1985696630 @default.
- W2170695514 cites W1993984220 @default.
- W2170695514 cites W1995382732 @default.
- W2170695514 cites W1997847578 @default.
- W2170695514 cites W2001947407 @default.
- W2170695514 cites W2004973269 @default.
- W2170695514 cites W2005249241 @default.
- W2170695514 cites W2010541697 @default.
- W2170695514 cites W2015727430 @default.
- W2170695514 cites W2018328865 @default.
- W2170695514 cites W2023609084 @default.
- W2170695514 cites W2026295157 @default.
- W2170695514 cites W2030023077 @default.
- W2170695514 cites W2030540147 @default.
- W2170695514 cites W2034202826 @default.
- W2170695514 cites W2035967472 @default.
- W2170695514 cites W2041257453 @default.
- W2170695514 cites W2042046250 @default.
- W2170695514 cites W2042692134 @default.
- W2170695514 cites W2049960244 @default.
- W2170695514 cites W2050203573 @default.
- W2170695514 cites W2055500440 @default.
- W2170695514 cites W2066451952 @default.
- W2170695514 cites W2079277581 @default.
- W2170695514 cites W2083301424 @default.
- W2170695514 cites W2100998381 @default.
- W2170695514 cites W2101786625 @default.
- W2170695514 cites W2107590758 @default.
- W2170695514 cites W2107761583 @default.
- W2170695514 cites W2114504059 @default.
- W2170695514 cites W2119997979 @default.
- W2170695514 cites W2120118166 @default.
- W2170695514 cites W2124642451 @default.
- W2170695514 cites W2125297255 @default.
- W2170695514 cites W2126464523 @default.
- W2170695514 cites W2127671904 @default.
- W2170695514 cites W2130025277 @default.
- W2170695514 cites W2136990385 @default.
- W2170695514 cites W2141042890 @default.
- W2170695514 cites W2142727681 @default.
- W2170695514 cites W2145245409 @default.
- W2170695514 cites W2146851247 @default.
- W2170695514 cites W2147887607 @default.
- W2170695514 cites W2149539527 @default.
- W2170695514 cites W2152717032 @default.
- W2170695514 cites W2159868744 @default.
- W2170695514 cites W2162425860 @default.
- W2170695514 cites W2162974904 @default.
- W2170695514 cites W2163044580 @default.
- W2170695514 cites W2165394332 @default.
- W2170695514 cites W2165495127 @default.
- W2170695514 cites W2165498879 @default.
- W2170695514 cites W2169798298 @default.
- W2170695514 cites W2171234904 @default.
- W2170695514 cites W2196914458 @default.
- W2170695514 cites W2204308139 @default.
- W2170695514 cites W2217286734 @default.
- W2170695514 cites W2299614795 @default.
- W2170695514 cites W2311936561 @default.
- W2170695514 cites W2315818844 @default.
- W2170695514 cites W2316847825 @default.
- W2170695514 cites W2325088857 @default.
- W2170695514 cites W2330749706 @default.
- W2170695514 cites W2408516047 @default.
- W2170695514 cites W2492623884 @default.
- W2170695514 cites W3095750625 @default.
- W2170695514 cites W3119365770 @default.
- W2170695514 cites W3121888753 @default.
- W2170695514 cites W3122225555 @default.
- W2170695514 cites W3124715068 @default.
- W2170695514 cites W3125294000 @default.
- W2170695514 cites W3128757323 @default.
- W2170695514 cites W3139141220 @default.
- W2170695514 cites W56761019 @default.
- W2170695514 cites W600941587 @default.
- W2170695514 cites W3111497557 @default.
- W2170695514 doi "https://doi.org/10.2113/econgeo.108.4.605" @default.
- W2170695514 hasPublicationYear "2013" @default.
- W2170695514 type Work @default.
- W2170695514 sameAs 2170695514 @default.
- W2170695514 citedByCount "32" @default.
- W2170695514 countsByYear W21706955142014 @default.
- W2170695514 countsByYear W21706955142015 @default.