Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170702451> ?p ?o ?g. }
- W2170702451 endingPage "9" @default.
- W2170702451 startingPage "1" @default.
- W2170702451 abstract "It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor." @default.
- W2170702451 created "2016-06-24" @default.
- W2170702451 creator A5018051274 @default.
- W2170702451 creator A5038516097 @default.
- W2170702451 creator A5070660078 @default.
- W2170702451 creator A5081220212 @default.
- W2170702451 date "2013-01-01" @default.
- W2170702451 modified "2023-10-06" @default.
- W2170702451 title "Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique" @default.
- W2170702451 cites W1966389480 @default.
- W2170702451 cites W1972407523 @default.
- W2170702451 cites W1974704199 @default.
- W2170702451 cites W1974899246 @default.
- W2170702451 cites W1981364462 @default.
- W2170702451 cites W1982595063 @default.
- W2170702451 cites W1983257650 @default.
- W2170702451 cites W1984429951 @default.
- W2170702451 cites W1987416224 @default.
- W2170702451 cites W1989856919 @default.
- W2170702451 cites W1992086000 @default.
- W2170702451 cites W1997640875 @default.
- W2170702451 cites W1998927611 @default.
- W2170702451 cites W2002609238 @default.
- W2170702451 cites W2009040055 @default.
- W2170702451 cites W2011145213 @default.
- W2170702451 cites W2013796338 @default.
- W2170702451 cites W2014935324 @default.
- W2170702451 cites W2017631291 @default.
- W2170702451 cites W2021674763 @default.
- W2170702451 cites W2029934700 @default.
- W2170702451 cites W2031495754 @default.
- W2170702451 cites W2041174476 @default.
- W2170702451 cites W2055302899 @default.
- W2170702451 cites W2055639942 @default.
- W2170702451 cites W2060181267 @default.
- W2170702451 cites W2065586875 @default.
- W2170702451 cites W2086594682 @default.
- W2170702451 cites W2091828368 @default.
- W2170702451 cites W2093160540 @default.
- W2170702451 cites W2106235591 @default.
- W2170702451 cites W2121621337 @default.
- W2170702451 cites W2121761828 @default.
- W2170702451 cites W2129308041 @default.
- W2170702451 cites W2130694919 @default.
- W2170702451 cites W2147290521 @default.
- W2170702451 cites W2148936075 @default.
- W2170702451 cites W2161201021 @default.
- W2170702451 cites W2168747298 @default.
- W2170702451 cites W2236361361 @default.
- W2170702451 cites W2316448147 @default.
- W2170702451 cites W2321435983 @default.
- W2170702451 cites W2543580944 @default.
- W2170702451 cites W3102008106 @default.
- W2170702451 cites W4211172053 @default.
- W2170702451 doi "https://doi.org/10.1155/2013/789454" @default.
- W2170702451 hasPublicationYear "2013" @default.
- W2170702451 type Work @default.
- W2170702451 sameAs 2170702451 @default.
- W2170702451 citedByCount "9" @default.
- W2170702451 countsByYear W21707024512014 @default.
- W2170702451 countsByYear W21707024512015 @default.
- W2170702451 countsByYear W21707024512016 @default.
- W2170702451 countsByYear W21707024512017 @default.
- W2170702451 countsByYear W21707024512020 @default.
- W2170702451 countsByYear W21707024512023 @default.
- W2170702451 crossrefType "journal-article" @default.
- W2170702451 hasAuthorship W2170702451A5018051274 @default.
- W2170702451 hasAuthorship W2170702451A5038516097 @default.
- W2170702451 hasAuthorship W2170702451A5070660078 @default.
- W2170702451 hasAuthorship W2170702451A5081220212 @default.
- W2170702451 hasBestOaLocation W21707024511 @default.
- W2170702451 hasConcept C111368507 @default.
- W2170702451 hasConcept C11413529 @default.
- W2170702451 hasConcept C127313418 @default.
- W2170702451 hasConcept C138631740 @default.
- W2170702451 hasConcept C171250308 @default.
- W2170702451 hasConcept C186060115 @default.
- W2170702451 hasConcept C192562407 @default.
- W2170702451 hasConcept C2778517922 @default.
- W2170702451 hasConcept C30080830 @default.
- W2170702451 hasConcept C41008148 @default.
- W2170702451 hasConcept C85617194 @default.
- W2170702451 hasConcept C86803240 @default.
- W2170702451 hasConceptScore W2170702451C111368507 @default.
- W2170702451 hasConceptScore W2170702451C11413529 @default.
- W2170702451 hasConceptScore W2170702451C127313418 @default.
- W2170702451 hasConceptScore W2170702451C138631740 @default.
- W2170702451 hasConceptScore W2170702451C171250308 @default.
- W2170702451 hasConceptScore W2170702451C186060115 @default.
- W2170702451 hasConceptScore W2170702451C192562407 @default.
- W2170702451 hasConceptScore W2170702451C2778517922 @default.
- W2170702451 hasConceptScore W2170702451C30080830 @default.
- W2170702451 hasConceptScore W2170702451C41008148 @default.
- W2170702451 hasConceptScore W2170702451C85617194 @default.
- W2170702451 hasConceptScore W2170702451C86803240 @default.
- W2170702451 hasFunder F4320321709 @default.
- W2170702451 hasLocation W21707024511 @default.
- W2170702451 hasLocation W21707024512 @default.