Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170706827> ?p ?o ?g. }
- W2170706827 endingPage "1060" @default.
- W2170706827 startingPage "1043" @default.
- W2170706827 abstract "The ongoing discovery of terrestrial exoplanets accentuates the importance of studying planetary evolution for a wide range of initial conditions. We perform thermal evolution simulations for generic terrestrial planets with masses ranging from that of Mars to 10M⊕ in the stagnant-lid regime, the most natural mode of convection with strongly temperature-dependent viscosity. Given considerable uncertainty surrounding the dependency of mantle rheology on pressure, we choose to focus on the end-member case of pressure-independent potential viscosity, where viscosity does not change with depth along an adiabatic temperature gradient. We employ principal component analysis and linear regression to capture the first-order systematics of possible evolutionary scenarios from a large number of simulation runs. With increased planetary mass, crustal thickness and the degree of mantle processing are both predicted to decrease, and such size effects can also be derived with simple scaling analyses. The likelihood of plate tectonics is quantified using a mantle rheology that takes into account both ductile and brittle deformation mechanisms. Confirming earlier scaling analyses, the effects of lithosphere hydration dominate the effects of planetary mass. The possibility of basalt-eclogite phase transition in the planetary crust is found to increase with planetary mass, and we suggest that massive terrestrial planets may escape the stagnant-lid regime through the formation of a self-destabilizing dense eclogite layer." @default.
- W2170706827 created "2016-06-24" @default.
- W2170706827 creator A5078675482 @default.
- W2170706827 creator A5089460378 @default.
- W2170706827 date "2012-11-01" @default.
- W2170706827 modified "2023-10-12" @default.
- W2170706827 title "Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust" @default.
- W2170706827 cites W1548973875 @default.
- W2170706827 cites W1965951213 @default.
- W2170706827 cites W1970045349 @default.
- W2170706827 cites W1976172463 @default.
- W2170706827 cites W1977156689 @default.
- W2170706827 cites W1977202349 @default.
- W2170706827 cites W1977741033 @default.
- W2170706827 cites W1977809024 @default.
- W2170706827 cites W1978750479 @default.
- W2170706827 cites W1981931554 @default.
- W2170706827 cites W1984800782 @default.
- W2170706827 cites W1991650472 @default.
- W2170706827 cites W2000896842 @default.
- W2170706827 cites W2003601626 @default.
- W2170706827 cites W2007740399 @default.
- W2170706827 cites W2010422258 @default.
- W2170706827 cites W2017240906 @default.
- W2170706827 cites W2031887605 @default.
- W2170706827 cites W2032707629 @default.
- W2170706827 cites W2035867684 @default.
- W2170706827 cites W2040907442 @default.
- W2170706827 cites W2046984304 @default.
- W2170706827 cites W2047809683 @default.
- W2170706827 cites W2049747765 @default.
- W2170706827 cites W2050625664 @default.
- W2170706827 cites W2050756326 @default.
- W2170706827 cites W2057249845 @default.
- W2170706827 cites W2059470845 @default.
- W2170706827 cites W2062221814 @default.
- W2170706827 cites W2063436465 @default.
- W2170706827 cites W2067333449 @default.
- W2170706827 cites W2068389466 @default.
- W2170706827 cites W2082155392 @default.
- W2170706827 cites W2083269074 @default.
- W2170706827 cites W2083678379 @default.
- W2170706827 cites W2083935149 @default.
- W2170706827 cites W2084674619 @default.
- W2170706827 cites W2093599820 @default.
- W2170706827 cites W2097784732 @default.
- W2170706827 cites W2097914838 @default.
- W2170706827 cites W2098701940 @default.
- W2170706827 cites W2102417275 @default.
- W2170706827 cites W2110418402 @default.
- W2170706827 cites W2110420837 @default.
- W2170706827 cites W2110903971 @default.
- W2170706827 cites W2121772518 @default.
- W2170706827 cites W2126777812 @default.
- W2170706827 cites W2127054216 @default.
- W2170706827 cites W2127528886 @default.
- W2170706827 cites W2132117032 @default.
- W2170706827 cites W2132427241 @default.
- W2170706827 cites W2137176177 @default.
- W2170706827 cites W2139480736 @default.
- W2170706827 cites W2146515327 @default.
- W2170706827 cites W2148213419 @default.
- W2170706827 cites W2148503641 @default.
- W2170706827 cites W2152755751 @default.
- W2170706827 cites W2153894617 @default.
- W2170706827 cites W2156067383 @default.
- W2170706827 cites W2156405862 @default.
- W2170706827 cites W2167538092 @default.
- W2170706827 cites W2168867033 @default.
- W2170706827 cites W2169841285 @default.
- W2170706827 cites W2170605098 @default.
- W2170706827 cites W2171212919 @default.
- W2170706827 cites W2172052364 @default.
- W2170706827 cites W2467885025 @default.
- W2170706827 cites W3020842808 @default.
- W2170706827 cites W3099618402 @default.
- W2170706827 cites W3099766157 @default.
- W2170706827 cites W3102514863 @default.
- W2170706827 cites W3103810916 @default.
- W2170706827 cites W4234440840 @default.
- W2170706827 cites W4293717724 @default.
- W2170706827 doi "https://doi.org/10.1016/j.icarus.2012.10.015" @default.
- W2170706827 hasPublicationYear "2012" @default.
- W2170706827 type Work @default.
- W2170706827 sameAs 2170706827 @default.
- W2170706827 citedByCount "57" @default.
- W2170706827 countsByYear W21707068272013 @default.
- W2170706827 countsByYear W21707068272014 @default.
- W2170706827 countsByYear W21707068272015 @default.
- W2170706827 countsByYear W21707068272016 @default.
- W2170706827 countsByYear W21707068272017 @default.
- W2170706827 countsByYear W21707068272018 @default.
- W2170706827 countsByYear W21707068272019 @default.
- W2170706827 countsByYear W21707068272020 @default.
- W2170706827 countsByYear W21707068272021 @default.
- W2170706827 countsByYear W21707068272022 @default.
- W2170706827 countsByYear W21707068272023 @default.
- W2170706827 crossrefType "journal-article" @default.