Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170949692> ?p ?o ?g. }
- W2170949692 endingPage "265" @default.
- W2170949692 startingPage "251" @default.
- W2170949692 abstract "Modern software systems are increasingly configurable. While this has many benefits, it also makes some software engineering tasks,such as software testing, much harder. This is because, in theory,unique errors could be hiding in any configuration, and, therefore,every configuration may need to undergo expensive testing. As this is generally infeasible, developers need cost-effective technique for selecting which specific configurations they will test. One popular selection approach is combinatorial interaction testing (CIT), where the developer selects a strength t and then computes a covering array (a set of configurations) in which all t-way combinations of configuration option settings appear at least once. In prior work, we demonstrated several limitations of the CIT approach. In particular, we found that a given system's effective configuration space - the minimal set of configurations needed to achieve a specific goal - could comprise only a tiny subset of the system's full configuration space. We also found that effective configuration space may not be well approximated by t-way covering arrays. Based on these insights we have developed an algorithm called interaction tree discovery (iTree). iTree is an iterative learning algorithm that efficiently searches for a small set of configurations that closely approximates a system's effective configuration space. On each iteration iTree tests the system on a small sample of carefully chosen configurations, monitors the system's behaviors, and then applies machine learning techniques to discover which combinations of option settings are potentially responsible for any newly observed behaviors. This information is used in the next iteration to pick a new sample of configurations that are likely to reveal further new behaviors. In prior work, we presented an initial version of iTree and performed an initial evaluation with promising results. This paper presents an improved iTree algorithm in greater detail. The key improvements are based on our use of composite proto-interactions - a construct that improves iTree's ability to correctly learn key configuration option combinations, which in turn significantly improves iTree's running time, without sacrificing effectiveness. Finally, the paper presents a detailed evaluation of the improved iTree algorithm by comparing the coverage it achieves versus that of covering arrays and randomly generated configuration sets, including a significantly expanded scalability evaluation with the ~ 1M-LOC MySQL. Our results strongly suggest that the improved iTree algorithm is highly scalable and can identify a high-coverage test set of configurations more effectively than existing methods." @default.
- W2170949692 created "2016-06-24" @default.
- W2170949692 creator A5038702707 @default.
- W2170949692 creator A5044959480 @default.
- W2170949692 creator A5052718914 @default.
- W2170949692 date "2014-03-01" @default.
- W2170949692 modified "2023-10-01" @default.
- W2170949692 title "iTree: Efficiently Discovering High-Coverage Configurations Using Interaction Trees" @default.
- W2170949692 cites W1550282031 @default.
- W2170949692 cites W1986531046 @default.
- W2170949692 cites W2046747375 @default.
- W2170949692 cites W2047619809 @default.
- W2170949692 cites W2077930480 @default.
- W2170949692 cites W2086665685 @default.
- W2170949692 cites W2098345837 @default.
- W2170949692 cites W2100162598 @default.
- W2170949692 cites W2101512909 @default.
- W2170949692 cites W2103689710 @default.
- W2170949692 cites W2104959783 @default.
- W2170949692 cites W2110068396 @default.
- W2170949692 cites W2112836019 @default.
- W2170949692 cites W2117799048 @default.
- W2170949692 cites W2120563984 @default.
- W2170949692 cites W2122176170 @default.
- W2170949692 cites W2122796178 @default.
- W2170949692 cites W2128204165 @default.
- W2170949692 cites W2133377719 @default.
- W2170949692 cites W2133990480 @default.
- W2170949692 cites W2156480873 @default.
- W2170949692 cites W2159614205 @default.
- W2170949692 cites W3151997557 @default.
- W2170949692 cites W4212883601 @default.
- W2170949692 cites W4236137412 @default.
- W2170949692 cites W4237158495 @default.
- W2170949692 cites W4237492309 @default.
- W2170949692 cites W4245412318 @default.
- W2170949692 cites W4252835114 @default.
- W2170949692 cites W4254306780 @default.
- W2170949692 cites W4254430216 @default.
- W2170949692 doi "https://doi.org/10.1109/tse.2013.55" @default.
- W2170949692 hasPublicationYear "2014" @default.
- W2170949692 type Work @default.
- W2170949692 sameAs 2170949692 @default.
- W2170949692 citedByCount "23" @default.
- W2170949692 countsByYear W21709496922015 @default.
- W2170949692 countsByYear W21709496922016 @default.
- W2170949692 countsByYear W21709496922017 @default.
- W2170949692 countsByYear W21709496922018 @default.
- W2170949692 countsByYear W21709496922019 @default.
- W2170949692 countsByYear W21709496922020 @default.
- W2170949692 countsByYear W21709496922021 @default.
- W2170949692 countsByYear W21709496922022 @default.
- W2170949692 countsByYear W21709496922023 @default.
- W2170949692 crossrefType "journal-article" @default.
- W2170949692 hasAuthorship W2170949692A5038702707 @default.
- W2170949692 hasAuthorship W2170949692A5044959480 @default.
- W2170949692 hasAuthorship W2170949692A5052718914 @default.
- W2170949692 hasBestOaLocation W21709496922 @default.
- W2170949692 hasConcept C111919701 @default.
- W2170949692 hasConcept C113174947 @default.
- W2170949692 hasConcept C113775141 @default.
- W2170949692 hasConcept C121332964 @default.
- W2170949692 hasConcept C134306372 @default.
- W2170949692 hasConcept C149091818 @default.
- W2170949692 hasConcept C177264268 @default.
- W2170949692 hasConcept C199360897 @default.
- W2170949692 hasConcept C2777904410 @default.
- W2170949692 hasConcept C2778572836 @default.
- W2170949692 hasConcept C33923547 @default.
- W2170949692 hasConcept C41008148 @default.
- W2170949692 hasConcept C62520636 @default.
- W2170949692 hasConcept C80444323 @default.
- W2170949692 hasConcept C90738871 @default.
- W2170949692 hasConceptScore W2170949692C111919701 @default.
- W2170949692 hasConceptScore W2170949692C113174947 @default.
- W2170949692 hasConceptScore W2170949692C113775141 @default.
- W2170949692 hasConceptScore W2170949692C121332964 @default.
- W2170949692 hasConceptScore W2170949692C134306372 @default.
- W2170949692 hasConceptScore W2170949692C149091818 @default.
- W2170949692 hasConceptScore W2170949692C177264268 @default.
- W2170949692 hasConceptScore W2170949692C199360897 @default.
- W2170949692 hasConceptScore W2170949692C2777904410 @default.
- W2170949692 hasConceptScore W2170949692C2778572836 @default.
- W2170949692 hasConceptScore W2170949692C33923547 @default.
- W2170949692 hasConceptScore W2170949692C41008148 @default.
- W2170949692 hasConceptScore W2170949692C62520636 @default.
- W2170949692 hasConceptScore W2170949692C80444323 @default.
- W2170949692 hasConceptScore W2170949692C90738871 @default.
- W2170949692 hasIssue "3" @default.
- W2170949692 hasLocation W21709496921 @default.
- W2170949692 hasLocation W21709496922 @default.
- W2170949692 hasOpenAccess W2170949692 @default.
- W2170949692 hasPrimaryLocation W21709496921 @default.
- W2170949692 hasRelatedWork W1869907491 @default.
- W2170949692 hasRelatedWork W2241762731 @default.
- W2170949692 hasRelatedWork W2355215981 @default.
- W2170949692 hasRelatedWork W2355247546 @default.
- W2170949692 hasRelatedWork W2355707807 @default.