Matches in SemOpenAlex for { <https://semopenalex.org/work/W2170973209> ?p ?o ?g. }
- W2170973209 endingPage "3087" @default.
- W2170973209 startingPage "3079" @default.
- W2170973209 abstract "We present two approaches to use unlabeled data to improve Sequence Learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a language model in NLP. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a algorithm for a later supervised sequence learning algorithm. In other words, the parameters obtained from the pretraining step can then be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after pretrained with the two approaches become more stable to train and generalize better. With pretraining, we were able to achieve strong performance in many classification tasks, such as text classification with IMDB, DBpedia or image recognition in CIFAR-10." @default.
- W2170973209 created "2016-06-24" @default.
- W2170973209 creator A5029197877 @default.
- W2170973209 creator A5088551093 @default.
- W2170973209 date "2015-12-07" @default.
- W2170973209 modified "2023-09-24" @default.
- W2170973209 title "Semi-supervised Sequence Learning" @default.
- W2170973209 cites W1493526108 @default.
- W2170973209 cites W1498436455 @default.
- W2170973209 cites W1552847225 @default.
- W2170973209 cites W1591706642 @default.
- W2170973209 cites W1591801644 @default.
- W2170973209 cites W1689711448 @default.
- W2170973209 cites W179875071 @default.
- W2170973209 cites W1810943226 @default.
- W2170973209 cites W1855892484 @default.
- W2170973209 cites W1889268436 @default.
- W2170973209 cites W1895577753 @default.
- W2170973209 cites W1923404803 @default.
- W2170973209 cites W2061873838 @default.
- W2170973209 cites W2064675550 @default.
- W2170973209 cites W2105577021 @default.
- W2170973209 cites W2113459411 @default.
- W2170973209 cites W2114960120 @default.
- W2170973209 cites W2116435618 @default.
- W2170973209 cites W2118434577 @default.
- W2170973209 cites W2130903752 @default.
- W2170973209 cites W2130942839 @default.
- W2170973209 cites W2131744502 @default.
- W2170973209 cites W2132339004 @default.
- W2170973209 cites W2136848157 @default.
- W2170973209 cites W2154359981 @default.
- W2170973209 cites W2163455955 @default.
- W2170973209 cites W2163605009 @default.
- W2170973209 cites W2251939518 @default.
- W2170973209 cites W2949541494 @default.
- W2170973209 cites W2950344723 @default.
- W2170973209 cites W2950726992 @default.
- W2170973209 cites W2952453038 @default.
- W2170973209 cites W2963012544 @default.
- W2170973209 cites W2963069010 @default.
- W2170973209 cites W2963921497 @default.
- W2170973209 cites W2963963856 @default.
- W2170973209 cites W3121926921 @default.
- W2170973209 cites W1525783482 @default.
- W2170973209 hasPublicationYear "2015" @default.
- W2170973209 type Work @default.
- W2170973209 sameAs 2170973209 @default.
- W2170973209 citedByCount "378" @default.
- W2170973209 countsByYear W21709732092016 @default.
- W2170973209 countsByYear W21709732092017 @default.
- W2170973209 countsByYear W21709732092018 @default.
- W2170973209 countsByYear W21709732092019 @default.
- W2170973209 countsByYear W21709732092020 @default.
- W2170973209 countsByYear W21709732092021 @default.
- W2170973209 crossrefType "proceedings-article" @default.
- W2170973209 hasAuthorship W2170973209A5029197877 @default.
- W2170973209 hasAuthorship W2170973209A5088551093 @default.
- W2170973209 hasConcept C101738243 @default.
- W2170973209 hasConcept C108583219 @default.
- W2170973209 hasConcept C119857082 @default.
- W2170973209 hasConcept C147168706 @default.
- W2170973209 hasConcept C153180895 @default.
- W2170973209 hasConcept C154945302 @default.
- W2170973209 hasConcept C162324750 @default.
- W2170973209 hasConcept C187736073 @default.
- W2170973209 hasConcept C204321447 @default.
- W2170973209 hasConcept C2524010 @default.
- W2170973209 hasConcept C2778112365 @default.
- W2170973209 hasConcept C2780451532 @default.
- W2170973209 hasConcept C28719098 @default.
- W2170973209 hasConcept C33923547 @default.
- W2170973209 hasConcept C35639132 @default.
- W2170973209 hasConcept C40506919 @default.
- W2170973209 hasConcept C41008148 @default.
- W2170973209 hasConcept C50644808 @default.
- W2170973209 hasConcept C54355233 @default.
- W2170973209 hasConcept C86803240 @default.
- W2170973209 hasConceptScore W2170973209C101738243 @default.
- W2170973209 hasConceptScore W2170973209C108583219 @default.
- W2170973209 hasConceptScore W2170973209C119857082 @default.
- W2170973209 hasConceptScore W2170973209C147168706 @default.
- W2170973209 hasConceptScore W2170973209C153180895 @default.
- W2170973209 hasConceptScore W2170973209C154945302 @default.
- W2170973209 hasConceptScore W2170973209C162324750 @default.
- W2170973209 hasConceptScore W2170973209C187736073 @default.
- W2170973209 hasConceptScore W2170973209C204321447 @default.
- W2170973209 hasConceptScore W2170973209C2524010 @default.
- W2170973209 hasConceptScore W2170973209C2778112365 @default.
- W2170973209 hasConceptScore W2170973209C2780451532 @default.
- W2170973209 hasConceptScore W2170973209C28719098 @default.
- W2170973209 hasConceptScore W2170973209C33923547 @default.
- W2170973209 hasConceptScore W2170973209C35639132 @default.
- W2170973209 hasConceptScore W2170973209C40506919 @default.
- W2170973209 hasConceptScore W2170973209C41008148 @default.
- W2170973209 hasConceptScore W2170973209C50644808 @default.
- W2170973209 hasConceptScore W2170973209C54355233 @default.
- W2170973209 hasConceptScore W2170973209C86803240 @default.