Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171213208> ?p ?o ?g. }
- W2171213208 abstract "Machine learning techniques extend the past experiences into the future. However, when the number of examples in the minority class (positive cases) is very small in comparison with the remaining classes, it poses a serious challenge to the machine learning [63],[119],[5],[81]. In this kind of problems, the prediction of the majority class is favoured because it has a high chance of being correct. This characteristic is present in many real-world problems, whose objective is to classify the minority class in imbalanced data sets. However, a prediction that detects more positive cases may be paid for with more false alarms. It is important to determine a balance between the detection of positive cases and false alarms. A range of classifications would give users the option to choose the best tradeoff between detecting positive cases and false alarms according to their requirements. On the other hand, we consider it is important to provide a comprehensive solution, which shows the real variables and conditions in the prediction. Thus, the users could combine their knowledge in order to make a more informed decision. In this thesis, we present three novel approaches: Repository Method (RM), Evolving Decision Rules (EDR) and Scenario Method (SM). We use Genetic Programming (GP) and supervised learning to build the methods proposed in this thesis. The main objectives of RM and EDR are: to predict the minority class in imbalanced environments, to generate a range of solutions to suit different users’ preferences and to provide an comprehensible solution for the user. On the other hand, SM has been designed to improve the precision and accuracy of the prediction. However, such improvement is paid for with a decrease in the recall. But, the users have to make the decision of which of these parameters is more adequate to satisfy their needs. This work is illustrated predicting future opportunities in financial stock markets. Experiments of our methods were carried out, and these showed promising results for achieving our goals. RM and EDR were compared to a standard Genetic Programming, EDDIE-Arb and C5.0. The methods presented in this thesis can also be used in other fields of knowledge, these should not be limited to financial forecasting problems." @default.
- W2171213208 created "2016-06-24" @default.
- W2171213208 creator A5037371869 @default.
- W2171213208 creator A5065293715 @default.
- W2171213208 date "2008-01-01" @default.
- W2171213208 modified "2023-10-02" @default.
- W2171213208 title "NEW CLASSIFICATION METHODS FOR GATHERING PATTERNS IN THE CONTEXT OF GENETIC PROGRAMMING" @default.
- W2171213208 cites W142793689 @default.
- W2171213208 cites W147708904 @default.
- W2171213208 cites W1479772222 @default.
- W2171213208 cites W1488666798 @default.
- W2171213208 cites W1493611775 @default.
- W2171213208 cites W1497256448 @default.
- W2171213208 cites W1509764836 @default.
- W2171213208 cites W1517113043 @default.
- W2171213208 cites W1521843029 @default.
- W2171213208 cites W1524761913 @default.
- W2171213208 cites W1547039882 @default.
- W2171213208 cites W1551103807 @default.
- W2171213208 cites W1557692985 @default.
- W2171213208 cites W1557733817 @default.
- W2171213208 cites W1559950192 @default.
- W2171213208 cites W1560681326 @default.
- W2171213208 cites W1571061851 @default.
- W2171213208 cites W1576818901 @default.
- W2171213208 cites W1577171536 @default.
- W2171213208 cites W1577300052 @default.
- W2171213208 cites W1578975453 @default.
- W2171213208 cites W1588282782 @default.
- W2171213208 cites W1589720045 @default.
- W2171213208 cites W1589922412 @default.
- W2171213208 cites W1589969568 @default.
- W2171213208 cites W1591261915 @default.
- W2171213208 cites W1592596255 @default.
- W2171213208 cites W1592894394 @default.
- W2171213208 cites W1594031697 @default.
- W2171213208 cites W1595468493 @default.
- W2171213208 cites W1605695115 @default.
- W2171213208 cites W1643230496 @default.
- W2171213208 cites W167517725 @default.
- W2171213208 cites W1710107245 @default.
- W2171213208 cites W172818335 @default.
- W2171213208 cites W1744703711 @default.
- W2171213208 cites W1784695092 @default.
- W2171213208 cites W1836887430 @default.
- W2171213208 cites W183764970 @default.
- W2171213208 cites W1839992600 @default.
- W2171213208 cites W184660912 @default.
- W2171213208 cites W1953058028 @default.
- W2171213208 cites W1965895350 @default.
- W2171213208 cites W1989101984 @default.
- W2171213208 cites W1993220166 @default.
- W2171213208 cites W1994584977 @default.
- W2171213208 cites W1997683821 @default.
- W2171213208 cites W2011107379 @default.
- W2171213208 cites W2023299139 @default.
- W2171213208 cites W2042704421 @default.
- W2171213208 cites W2053724458 @default.
- W2171213208 cites W2067498052 @default.
- W2171213208 cites W2096451472 @default.
- W2171213208 cites W2096942889 @default.
- W2171213208 cites W2098880216 @default.
- W2171213208 cites W2100604298 @default.
- W2171213208 cites W2101548729 @default.
- W2171213208 cites W2104416102 @default.
- W2171213208 cites W2105646650 @default.
- W2171213208 cites W2107282997 @default.
- W2171213208 cites W2107861013 @default.
- W2171213208 cites W2109883327 @default.
- W2171213208 cites W2120040939 @default.
- W2171213208 cites W2120304003 @default.
- W2171213208 cites W2121943809 @default.
- W2171213208 cites W2123504579 @default.
- W2171213208 cites W2125055259 @default.
- W2171213208 cites W2125287803 @default.
- W2171213208 cites W2128420091 @default.
- W2171213208 cites W2129882004 @default.
- W2171213208 cites W2131391645 @default.
- W2171213208 cites W2131773668 @default.
- W2171213208 cites W2133928392 @default.
- W2171213208 cites W2137029138 @default.
- W2171213208 cites W2142183404 @default.
- W2171213208 cites W2143236646 @default.
- W2171213208 cites W2148553728 @default.
- W2171213208 cites W2149470226 @default.
- W2171213208 cites W2166716616 @default.
- W2171213208 cites W2170913656 @default.
- W2171213208 cites W2171770134 @default.
- W2171213208 cites W2183374752 @default.
- W2171213208 cites W2526208276 @default.
- W2171213208 cites W2544387354 @default.
- W2171213208 cites W2911964244 @default.
- W2171213208 cites W2912188055 @default.
- W2171213208 cites W2996739384 @default.
- W2171213208 cites W3015571647 @default.
- W2171213208 cites W3028232160 @default.
- W2171213208 cites W3144847502 @default.
- W2171213208 cites W593056538 @default.
- W2171213208 cites W63665094 @default.
- W2171213208 cites W86212350 @default.