Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171373992> ?p ?o ?g. }
- W2171373992 abstract "Conventional appearance-based face recognition methods usually assume there are multiple samples per person (MSPP) available during the training phase for discriminative feature extraction. In many practical face recognition applications such as law enhancement, e-passport and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multi-manifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled image into several non-overlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Lastly, we propose a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach." @default.
- W2171373992 created "2016-06-24" @default.
- W2171373992 creator A5019615508 @default.
- W2171373992 creator A5036336837 @default.
- W2171373992 creator A5090079801 @default.
- W2171373992 date "2011-11-01" @default.
- W2171373992 modified "2023-09-27" @default.
- W2171373992 title "Discriminative multi-manifold analysis for face recognition from a single training sample per person" @default.
- W2171373992 cites W1535298460 @default.
- W2171373992 cites W1541521713 @default.
- W2171373992 cites W1545641654 @default.
- W2171373992 cites W1591385104 @default.
- W2171373992 cites W1821148229 @default.
- W2171373992 cites W1865963168 @default.
- W2171373992 cites W1982850300 @default.
- W2171373992 cites W1996765463 @default.
- W2171373992 cites W1997011019 @default.
- W2171373992 cites W1997659823 @default.
- W2171373992 cites W2001141328 @default.
- W2171373992 cites W2001947174 @default.
- W2171373992 cites W2009824857 @default.
- W2171373992 cites W2021012145 @default.
- W2171373992 cites W2024853191 @default.
- W2171373992 cites W2027786278 @default.
- W2171373992 cites W2033419168 @default.
- W2171373992 cites W2038165640 @default.
- W2171373992 cites W2043694524 @default.
- W2171373992 cites W2053186076 @default.
- W2171373992 cites W2054891869 @default.
- W2171373992 cites W2062019416 @default.
- W2171373992 cites W2070343473 @default.
- W2171373992 cites W2072509929 @default.
- W2171373992 cites W2075772568 @default.
- W2171373992 cites W2092131162 @default.
- W2171373992 cites W2093238900 @default.
- W2171373992 cites W2095189186 @default.
- W2171373992 cites W2095469431 @default.
- W2171373992 cites W2097777575 @default.
- W2171373992 cites W2102544846 @default.
- W2171373992 cites W2103250033 @default.
- W2171373992 cites W2107369107 @default.
- W2171373992 cites W2108767394 @default.
- W2171373992 cites W2110410904 @default.
- W2171373992 cites W2110599581 @default.
- W2171373992 cites W2117072267 @default.
- W2171373992 cites W2117553576 @default.
- W2171373992 cites W2118527389 @default.
- W2171373992 cites W2118976878 @default.
- W2171373992 cites W2120372495 @default.
- W2171373992 cites W2120453412 @default.
- W2171373992 cites W2121647436 @default.
- W2171373992 cites W2123115309 @default.
- W2171373992 cites W2134262590 @default.
- W2171373992 cites W2138451337 @default.
- W2171373992 cites W2141200867 @default.
- W2171373992 cites W2141923507 @default.
- W2171373992 cites W2156142937 @default.
- W2171373992 cites W2162854380 @default.
- W2171373992 cites W2163516157 @default.
- W2171373992 cites W2163999590 @default.
- W2171373992 cites W2167144347 @default.
- W2171373992 cites W2167999447 @default.
- W2171373992 cites W2170858770 @default.
- W2171373992 cites W2171262059 @default.
- W2171373992 cites W2532700532 @default.
- W2171373992 cites W2538836564 @default.
- W2171373992 cites W2994340921 @default.
- W2171373992 cites W3148981562 @default.
- W2171373992 cites W3203006154 @default.
- W2171373992 cites W7299809 @default.
- W2171373992 cites W2136040699 @default.
- W2171373992 doi "https://doi.org/10.1109/iccv.2011.6126464" @default.
- W2171373992 hasPublicationYear "2011" @default.
- W2171373992 type Work @default.
- W2171373992 sameAs 2171373992 @default.
- W2171373992 citedByCount "42" @default.
- W2171373992 countsByYear W21713739922012 @default.
- W2171373992 countsByYear W21713739922013 @default.
- W2171373992 countsByYear W21713739922014 @default.
- W2171373992 countsByYear W21713739922015 @default.
- W2171373992 countsByYear W21713739922016 @default.
- W2171373992 countsByYear W21713739922017 @default.
- W2171373992 countsByYear W21713739922018 @default.
- W2171373992 countsByYear W21713739922019 @default.
- W2171373992 countsByYear W21713739922020 @default.
- W2171373992 countsByYear W21713739922021 @default.
- W2171373992 crossrefType "proceedings-article" @default.
- W2171373992 hasAuthorship W2171373992A5019615508 @default.
- W2171373992 hasAuthorship W2171373992A5036336837 @default.
- W2171373992 hasAuthorship W2171373992A5090079801 @default.
- W2171373992 hasConcept C105795698 @default.
- W2171373992 hasConcept C127413603 @default.
- W2171373992 hasConcept C138885662 @default.
- W2171373992 hasConcept C144024400 @default.
- W2171373992 hasConcept C151876577 @default.
- W2171373992 hasConcept C153120616 @default.
- W2171373992 hasConcept C153180895 @default.
- W2171373992 hasConcept C154945302 @default.
- W2171373992 hasConcept C165064840 @default.
- W2171373992 hasConcept C2776401178 @default.