Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171569275> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2171569275 abstract "The Kneser graph K(n,k) is the graph whose vertices are the k-element subsets of an n-elements set, with two vertices adjacent if the sets are disjoint. The square G^2 of a graph G is the graph defined on V(G) such that two vertices u and v are adjacent in G^2 if the distance between u and v in G is at most 2. Determining the chromatic number of the square of the Kneser graph K(2k+1,k) is an interesting problem, but not much progress has been made. Kim and Nakprasit (2004) showed that @g(K^2(2k+1,k))@?4k+2, and Chen, Lih, and Wu (2009) showed that @g(K^2(2k+1,k))@?3k+2 for k>=3. In this paper, we give improved upper bounds on @g(K^2(2k+1,k)). We show that @g(K^2(2k+1,k))@?2k+2, if 2k+1=2^n-1 for some positive integer n. Also we show that @g(K^2(2k+1,k))@?83k+203 for every integer k>=2. In addition to giving improved upper bounds, our proof is concise and can be easily understood by readers while the proof in Chen et al. (2009) is very complicated. Moreover, we show that @g(K^2(2k+r,k))=@Q(k^r) for each integer 2@?r@?k-2." @default.
- W2171569275 created "2016-06-24" @default.
- W2171569275 creator A5009151086 @default.
- W2171569275 creator A5014841173 @default.
- W2171569275 date "2014-02-01" @default.
- W2171569275 modified "2023-09-29" @default.
- W2171569275 title "Improved bounds on the chromatic numbers of the square of Kneser graphs" @default.
- W2171569275 cites W1999580696 @default.
- W2171569275 cites W2003995429 @default.
- W2171569275 cites W2031444854 @default.
- W2171569275 cites W2039092654 @default.
- W2171569275 cites W2091239462 @default.
- W2171569275 cites W2108911541 @default.
- W2171569275 cites W2148410650 @default.
- W2171569275 cites W2474966596 @default.
- W2171569275 cites W2489099563 @default.
- W2171569275 doi "https://doi.org/10.1016/j.disc.2013.10.008" @default.
- W2171569275 hasPublicationYear "2014" @default.
- W2171569275 type Work @default.
- W2171569275 sameAs 2171569275 @default.
- W2171569275 citedByCount "3" @default.
- W2171569275 countsByYear W21715692752015 @default.
- W2171569275 countsByYear W21715692752018 @default.
- W2171569275 countsByYear W21715692752020 @default.
- W2171569275 crossrefType "journal-article" @default.
- W2171569275 hasAuthorship W2171569275A5009151086 @default.
- W2171569275 hasAuthorship W2171569275A5014841173 @default.
- W2171569275 hasBestOaLocation W21715692751 @default.
- W2171569275 hasConcept C114614502 @default.
- W2171569275 hasConcept C118615104 @default.
- W2171569275 hasConcept C132525143 @default.
- W2171569275 hasConcept C134306372 @default.
- W2171569275 hasConcept C196956537 @default.
- W2171569275 hasConcept C199360897 @default.
- W2171569275 hasConcept C33923547 @default.
- W2171569275 hasConcept C41008148 @default.
- W2171569275 hasConcept C45340560 @default.
- W2171569275 hasConcept C77553402 @default.
- W2171569275 hasConcept C97137487 @default.
- W2171569275 hasConceptScore W2171569275C114614502 @default.
- W2171569275 hasConceptScore W2171569275C118615104 @default.
- W2171569275 hasConceptScore W2171569275C132525143 @default.
- W2171569275 hasConceptScore W2171569275C134306372 @default.
- W2171569275 hasConceptScore W2171569275C196956537 @default.
- W2171569275 hasConceptScore W2171569275C199360897 @default.
- W2171569275 hasConceptScore W2171569275C33923547 @default.
- W2171569275 hasConceptScore W2171569275C41008148 @default.
- W2171569275 hasConceptScore W2171569275C45340560 @default.
- W2171569275 hasConceptScore W2171569275C77553402 @default.
- W2171569275 hasConceptScore W2171569275C97137487 @default.
- W2171569275 hasFunder F4320322120 @default.
- W2171569275 hasLocation W21715692751 @default.
- W2171569275 hasLocation W21715692752 @default.
- W2171569275 hasOpenAccess W2171569275 @default.
- W2171569275 hasPrimaryLocation W21715692751 @default.
- W2171569275 hasRelatedWork W1591184182 @default.
- W2171569275 hasRelatedWork W1980349757 @default.
- W2171569275 hasRelatedWork W1983141456 @default.
- W2171569275 hasRelatedWork W1994371404 @default.
- W2171569275 hasRelatedWork W2019525838 @default.
- W2171569275 hasRelatedWork W2022648605 @default.
- W2171569275 hasRelatedWork W2030051419 @default.
- W2171569275 hasRelatedWork W2079610115 @default.
- W2171569275 hasRelatedWork W2148392390 @default.
- W2171569275 hasRelatedWork W2160346379 @default.
- W2171569275 hasRelatedWork W2261961019 @default.
- W2171569275 hasRelatedWork W2766909239 @default.
- W2171569275 hasRelatedWork W2800254809 @default.
- W2171569275 hasRelatedWork W2894702993 @default.
- W2171569275 hasRelatedWork W2950385387 @default.
- W2171569275 hasRelatedWork W2963877737 @default.
- W2171569275 hasRelatedWork W2964293255 @default.
- W2171569275 hasRelatedWork W3094481683 @default.
- W2171569275 hasRelatedWork W3119586722 @default.
- W2171569275 hasRelatedWork W3167454880 @default.
- W2171569275 isParatext "false" @default.
- W2171569275 isRetracted "false" @default.
- W2171569275 magId "2171569275" @default.
- W2171569275 workType "article" @default.