Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171653751> ?p ?o ?g. }
- W2171653751 endingPage "1303" @default.
- W2171653751 startingPage "1294" @default.
- W2171653751 abstract "We consider the problem of estimating parameters of a model described by an equation of special form. Specific models arise in the analysis of a wide class of computer vision problems, including conic fitting and estimation of the fundamental matrix. We assume that noisy data are accompanied by (known) covariance matrices characterizing the uncertainty of the measurements. A cost function is first obtained by considering a maximum-likelihood formulation and applying certain necessary approximations that render the problem tractable. A Newton-like iterative scheme is then generated for determining a minimizer of the cost function. Unlike alternative approaches such as Sampson's method or the renormalization technique, the new scheme has as its theoretical limit the minimizer of the cost function. Furthermore, the scheme is simply expressed, efficient, and unsurpassed as a general technique in our testing. An important feature of the method is that it can serve as a basis for conducting theoretical comparison of various estimation approaches." @default.
- W2171653751 created "2016-06-24" @default.
- W2171653751 creator A5028024287 @default.
- W2171653751 creator A5035368992 @default.
- W2171653751 creator A5047838487 @default.
- W2171653751 creator A5057979208 @default.
- W2171653751 date "2000-01-01" @default.
- W2171653751 modified "2023-09-27" @default.
- W2171653751 title "On the fitting of surfaces to data with covariances" @default.
- W2171653751 cites W1495111467 @default.
- W2171653751 cites W1509069826 @default.
- W2171653751 cites W1575387439 @default.
- W2171653751 cites W1847889532 @default.
- W2171653751 cites W1926435408 @default.
- W2171653751 cites W1981609785 @default.
- W2171653751 cites W1991923460 @default.
- W2171653751 cites W2010016312 @default.
- W2171653751 cites W2011891945 @default.
- W2171653751 cites W2023752928 @default.
- W2171653751 cites W2041784996 @default.
- W2171653751 cites W2045181334 @default.
- W2171653751 cites W2058009001 @default.
- W2171653751 cites W2096187576 @default.
- W2171653751 cites W2102481828 @default.
- W2171653751 cites W2108517239 @default.
- W2171653751 cites W2113003378 @default.
- W2171653751 cites W2140427427 @default.
- W2171653751 cites W2145713909 @default.
- W2171653751 cites W2149659501 @default.
- W2171653751 cites W2150587094 @default.
- W2171653751 cites W2150623853 @default.
- W2171653751 cites W2151984205 @default.
- W2171653751 cites W2152208313 @default.
- W2171653751 cites W2153178980 @default.
- W2171653751 cites W2162483208 @default.
- W2171653751 cites W2164358341 @default.
- W2171653751 cites W2165584048 @default.
- W2171653751 cites W2166809538 @default.
- W2171653751 cites W2167272966 @default.
- W2171653751 cites W3143949042 @default.
- W2171653751 cites W4206428854 @default.
- W2171653751 cites W4239129607 @default.
- W2171653751 doi "https://doi.org/10.1109/34.888714" @default.
- W2171653751 hasPublicationYear "2000" @default.
- W2171653751 type Work @default.
- W2171653751 sameAs 2171653751 @default.
- W2171653751 citedByCount "168" @default.
- W2171653751 countsByYear W21716537512012 @default.
- W2171653751 countsByYear W21716537512013 @default.
- W2171653751 countsByYear W21716537512014 @default.
- W2171653751 countsByYear W21716537512015 @default.
- W2171653751 countsByYear W21716537512016 @default.
- W2171653751 countsByYear W21716537512017 @default.
- W2171653751 countsByYear W21716537512018 @default.
- W2171653751 countsByYear W21716537512019 @default.
- W2171653751 countsByYear W21716537512020 @default.
- W2171653751 countsByYear W21716537512021 @default.
- W2171653751 countsByYear W21716537512022 @default.
- W2171653751 countsByYear W21716537512023 @default.
- W2171653751 crossrefType "journal-article" @default.
- W2171653751 hasAuthorship W2171653751A5028024287 @default.
- W2171653751 hasAuthorship W2171653751A5035368992 @default.
- W2171653751 hasAuthorship W2171653751A5047838487 @default.
- W2171653751 hasAuthorship W2171653751A5057979208 @default.
- W2171653751 hasBestOaLocation W21716537512 @default.
- W2171653751 hasConcept C105795698 @default.
- W2171653751 hasConcept C108598597 @default.
- W2171653751 hasConcept C11413529 @default.
- W2171653751 hasConcept C12426560 @default.
- W2171653751 hasConcept C126255220 @default.
- W2171653751 hasConcept C134306372 @default.
- W2171653751 hasConcept C138885662 @default.
- W2171653751 hasConcept C14036430 @default.
- W2171653751 hasConcept C151201525 @default.
- W2171653751 hasConcept C167928553 @default.
- W2171653751 hasConcept C178650346 @default.
- W2171653751 hasConcept C185142706 @default.
- W2171653751 hasConcept C2524010 @default.
- W2171653751 hasConcept C2776401178 @default.
- W2171653751 hasConcept C28826006 @default.
- W2171653751 hasConcept C33923547 @default.
- W2171653751 hasConcept C41008148 @default.
- W2171653751 hasConcept C41895202 @default.
- W2171653751 hasConcept C77618280 @default.
- W2171653751 hasConcept C78458016 @default.
- W2171653751 hasConcept C86803240 @default.
- W2171653751 hasConcept C89106044 @default.
- W2171653751 hasConceptScore W2171653751C105795698 @default.
- W2171653751 hasConceptScore W2171653751C108598597 @default.
- W2171653751 hasConceptScore W2171653751C11413529 @default.
- W2171653751 hasConceptScore W2171653751C12426560 @default.
- W2171653751 hasConceptScore W2171653751C126255220 @default.
- W2171653751 hasConceptScore W2171653751C134306372 @default.
- W2171653751 hasConceptScore W2171653751C138885662 @default.
- W2171653751 hasConceptScore W2171653751C14036430 @default.
- W2171653751 hasConceptScore W2171653751C151201525 @default.
- W2171653751 hasConceptScore W2171653751C167928553 @default.
- W2171653751 hasConceptScore W2171653751C178650346 @default.