Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171671647> ?p ?o ?g. }
- W2171671647 endingPage "314" @default.
- W2171671647 startingPage "301" @default.
- W2171671647 abstract "The estimation of the amount of reactive impurities and the level of fouling in a batch polymerisation reactor is of strategic importance to the polymerisation industry. It is essential that the level of impurities and reactor fouling are known (estimated) in order to be able to develop robust and reliable monitoring and control strategies. This paper describes two approaches based upon stacked neural network representations. In the first approach, an inverse neural network model of the polymer process is constructed and the initial reaction conditions are predicted. The amount of impurities and reactor wall fouling are then calculated by comparing the predicted values with the nominal initial conditions. In the second approach, a neural network is used to model the dynamic behaviour of the polymer process. The predicted trajectories are then compared with the on-line measurements of conversion and coolant temperatures. The techniques are compared on a first-principles-based simulation of a pilot scale batch methyl methacrylate (MMA) polymerisation reactor." @default.
- W2171671647 created "2016-06-24" @default.
- W2171671647 creator A5022077499 @default.
- W2171671647 creator A5041978682 @default.
- W2171671647 creator A5059881811 @default.
- W2171671647 creator A5081874228 @default.
- W2171671647 date "1999-02-01" @default.
- W2171671647 modified "2023-10-18" @default.
- W2171671647 title "Estimation of impurity and fouling in batch polymerisation reactors through the application of neural networks" @default.
- W2171671647 cites W2015029040 @default.
- W2171671647 cites W2016223002 @default.
- W2171671647 cites W2019734596 @default.
- W2171671647 cites W2025942256 @default.
- W2171671647 cites W2038654054 @default.
- W2171671647 cites W2041668296 @default.
- W2171671647 cites W2042022801 @default.
- W2171671647 cites W2044227616 @default.
- W2171671647 cites W2056185389 @default.
- W2171671647 cites W2076002340 @default.
- W2171671647 cites W2081491959 @default.
- W2171671647 cites W2107376597 @default.
- W2171671647 cites W2107939099 @default.
- W2171671647 cites W2113442785 @default.
- W2171671647 cites W2120363068 @default.
- W2171671647 cites W2124181495 @default.
- W2171671647 cites W2129357734 @default.
- W2171671647 cites W2129832613 @default.
- W2171671647 cites W2131417203 @default.
- W2171671647 cites W2134732652 @default.
- W2171671647 cites W2150884987 @default.
- W2171671647 cites W2476525671 @default.
- W2171671647 cites W2766736793 @default.
- W2171671647 cites W2912934387 @default.
- W2171671647 cites W2914369697 @default.
- W2171671647 cites W3148997568 @default.
- W2171671647 cites W636314743 @default.
- W2171671647 doi "https://doi.org/10.1016/s0098-1354(98)00275-0" @default.
- W2171671647 hasPublicationYear "1999" @default.
- W2171671647 type Work @default.
- W2171671647 sameAs 2171671647 @default.
- W2171671647 citedByCount "48" @default.
- W2171671647 countsByYear W21716716472012 @default.
- W2171671647 countsByYear W21716716472013 @default.
- W2171671647 countsByYear W21716716472015 @default.
- W2171671647 countsByYear W21716716472016 @default.
- W2171671647 countsByYear W21716716472019 @default.
- W2171671647 countsByYear W21716716472020 @default.
- W2171671647 countsByYear W21716716472023 @default.
- W2171671647 crossrefType "journal-article" @default.
- W2171671647 hasAuthorship W2171671647A5022077499 @default.
- W2171671647 hasAuthorship W2171671647A5041978682 @default.
- W2171671647 hasAuthorship W2171671647A5059881811 @default.
- W2171671647 hasAuthorship W2171671647A5081874228 @default.
- W2171671647 hasConcept C111919701 @default.
- W2171671647 hasConcept C115792997 @default.
- W2171671647 hasConcept C127413603 @default.
- W2171671647 hasConcept C154945302 @default.
- W2171671647 hasConcept C159985019 @default.
- W2171671647 hasConcept C161790260 @default.
- W2171671647 hasConcept C172658912 @default.
- W2171671647 hasConcept C178790620 @default.
- W2171671647 hasConcept C185592680 @default.
- W2171671647 hasConcept C192562407 @default.
- W2171671647 hasConcept C199360897 @default.
- W2171671647 hasConcept C21880701 @default.
- W2171671647 hasConcept C39432304 @default.
- W2171671647 hasConcept C41008148 @default.
- W2171671647 hasConcept C41625074 @default.
- W2171671647 hasConcept C42360764 @default.
- W2171671647 hasConcept C44228677 @default.
- W2171671647 hasConcept C47502133 @default.
- W2171671647 hasConcept C50644808 @default.
- W2171671647 hasConcept C521977710 @default.
- W2171671647 hasConcept C528095902 @default.
- W2171671647 hasConcept C55493867 @default.
- W2171671647 hasConcept C71987851 @default.
- W2171671647 hasConcept C78519656 @default.
- W2171671647 hasConcept C91914117 @default.
- W2171671647 hasConcept C98045186 @default.
- W2171671647 hasConceptScore W2171671647C111919701 @default.
- W2171671647 hasConceptScore W2171671647C115792997 @default.
- W2171671647 hasConceptScore W2171671647C127413603 @default.
- W2171671647 hasConceptScore W2171671647C154945302 @default.
- W2171671647 hasConceptScore W2171671647C159985019 @default.
- W2171671647 hasConceptScore W2171671647C161790260 @default.
- W2171671647 hasConceptScore W2171671647C172658912 @default.
- W2171671647 hasConceptScore W2171671647C178790620 @default.
- W2171671647 hasConceptScore W2171671647C185592680 @default.
- W2171671647 hasConceptScore W2171671647C192562407 @default.
- W2171671647 hasConceptScore W2171671647C199360897 @default.
- W2171671647 hasConceptScore W2171671647C21880701 @default.
- W2171671647 hasConceptScore W2171671647C39432304 @default.
- W2171671647 hasConceptScore W2171671647C41008148 @default.
- W2171671647 hasConceptScore W2171671647C41625074 @default.
- W2171671647 hasConceptScore W2171671647C42360764 @default.
- W2171671647 hasConceptScore W2171671647C44228677 @default.
- W2171671647 hasConceptScore W2171671647C47502133 @default.
- W2171671647 hasConceptScore W2171671647C50644808 @default.