Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171710987> ?p ?o ?g. }
- W2171710987 endingPage "2370" @default.
- W2171710987 startingPage "2361" @default.
- W2171710987 abstract "Missing data is a widespread problem that can affect the ability to use data to construct effective prediction systems. We investigate a common machine learning technique that can tolerate missing values, namely C4.5, to predict cost using six real world software project databases. We analyze the predictive performance after using the k-NN missing data imputation technique to see if it is better to tolerate missing data or to try to impute missing values and then apply the C4.5 algorithm. For the investigation, we simulated three missingness mechanisms, three missing data patterns, and five missing data percentages. We found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same time, both C4.5 and k-NN are little affected by the missingness mechanism, but that the missing data pattern and the missing data percentage have a strong negative impact upon prediction (or imputation) accuracy particularly if the missing data percentage exceeds 40%." @default.
- W2171710987 created "2016-06-24" @default.
- W2171710987 creator A5019971162 @default.
- W2171710987 creator A5027684680 @default.
- W2171710987 creator A5027835055 @default.
- W2171710987 creator A5074941666 @default.
- W2171710987 date "2008-12-01" @default.
- W2171710987 modified "2023-10-03" @default.
- W2171710987 title "Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation" @default.
- W2171710987 cites W1522428367 @default.
- W2171710987 cites W1583506646 @default.
- W2171710987 cites W1619226191 @default.
- W2171710987 cites W1666151602 @default.
- W2171710987 cites W1963745770 @default.
- W2171710987 cites W1978453247 @default.
- W2171710987 cites W1983479840 @default.
- W2171710987 cites W1994410397 @default.
- W2171710987 cites W2001453691 @default.
- W2171710987 cites W2009403983 @default.
- W2171710987 cites W2009407457 @default.
- W2171710987 cites W2011773465 @default.
- W2171710987 cites W2017337590 @default.
- W2171710987 cites W2024862801 @default.
- W2171710987 cites W2058128280 @default.
- W2171710987 cites W2075848956 @default.
- W2171710987 cites W2086221358 @default.
- W2171710987 cites W2086460959 @default.
- W2171710987 cites W2089856939 @default.
- W2171710987 cites W2092528416 @default.
- W2171710987 cites W2098168647 @default.
- W2171710987 cites W2100358124 @default.
- W2171710987 cites W2118519570 @default.
- W2171710987 cites W2119299083 @default.
- W2171710987 cites W2129707602 @default.
- W2171710987 cites W2130759652 @default.
- W2171710987 cites W2131378644 @default.
- W2171710987 cites W2132166479 @default.
- W2171710987 cites W2133310581 @default.
- W2171710987 cites W2133442842 @default.
- W2171710987 cites W2136691316 @default.
- W2171710987 cites W2145183204 @default.
- W2171710987 cites W2148245460 @default.
- W2171710987 cites W2148633389 @default.
- W2171710987 cites W2148949939 @default.
- W2171710987 cites W2155725368 @default.
- W2171710987 cites W2157542847 @default.
- W2171710987 cites W2157779650 @default.
- W2171710987 cites W2161074247 @default.
- W2171710987 cites W2171816001 @default.
- W2171710987 cites W2172074277 @default.
- W2171710987 cites W2912276539 @default.
- W2171710987 cites W4230454892 @default.
- W2171710987 cites W4234760406 @default.
- W2171710987 cites W4236137412 @default.
- W2171710987 cites W4248702675 @default.
- W2171710987 cites W4249593981 @default.
- W2171710987 doi "https://doi.org/10.1016/j.jss.2008.05.008" @default.
- W2171710987 hasPublicationYear "2008" @default.
- W2171710987 type Work @default.
- W2171710987 sameAs 2171710987 @default.
- W2171710987 citedByCount "63" @default.
- W2171710987 countsByYear W21717109872012 @default.
- W2171710987 countsByYear W21717109872013 @default.
- W2171710987 countsByYear W21717109872014 @default.
- W2171710987 countsByYear W21717109872015 @default.
- W2171710987 countsByYear W21717109872016 @default.
- W2171710987 countsByYear W21717109872017 @default.
- W2171710987 countsByYear W21717109872018 @default.
- W2171710987 countsByYear W21717109872019 @default.
- W2171710987 countsByYear W21717109872020 @default.
- W2171710987 countsByYear W21717109872021 @default.
- W2171710987 countsByYear W21717109872022 @default.
- W2171710987 countsByYear W21717109872023 @default.
- W2171710987 crossrefType "journal-article" @default.
- W2171710987 hasAuthorship W2171710987A5019971162 @default.
- W2171710987 hasAuthorship W2171710987A5027684680 @default.
- W2171710987 hasAuthorship W2171710987A5027835055 @default.
- W2171710987 hasAuthorship W2171710987A5074941666 @default.
- W2171710987 hasBestOaLocation W21717109872 @default.
- W2171710987 hasConcept C105795698 @default.
- W2171710987 hasConcept C119857082 @default.
- W2171710987 hasConcept C124101348 @default.
- W2171710987 hasConcept C154945302 @default.
- W2171710987 hasConcept C199360897 @default.
- W2171710987 hasConcept C2777904410 @default.
- W2171710987 hasConcept C33923547 @default.
- W2171710987 hasConcept C41008148 @default.
- W2171710987 hasConcept C45804977 @default.
- W2171710987 hasConcept C58041806 @default.
- W2171710987 hasConcept C9357733 @default.
- W2171710987 hasConceptScore W2171710987C105795698 @default.
- W2171710987 hasConceptScore W2171710987C119857082 @default.
- W2171710987 hasConceptScore W2171710987C124101348 @default.
- W2171710987 hasConceptScore W2171710987C154945302 @default.
- W2171710987 hasConceptScore W2171710987C199360897 @default.
- W2171710987 hasConceptScore W2171710987C2777904410 @default.
- W2171710987 hasConceptScore W2171710987C33923547 @default.
- W2171710987 hasConceptScore W2171710987C41008148 @default.