Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171794732> ?p ?o ?g. }
- W2171794732 endingPage "69" @default.
- W2171794732 startingPage "57" @default.
- W2171794732 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 419:57-69 (2010) - DOI: https://doi.org/10.3354/meps08840 Effects of nutrients and turbulence on the production of transparent exopolymer particles: a mesocosm study M. L. Pedrotti1,*, F. Peters2, S. Beauvais1, M. Vidal3, J. Egge4, A. Jacobsen4, C. Marrasé2 1Marine Microbial Ecology Group, Laboratoire d’Océanographie de Villefranche, CNRS-UMR 7093, BP 28, 06234 Villefranche-sur-mer, France 2Institut de Ciències del Mar, CMIMA (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain 3Departament d’Ecology, Universitat de Barcelona, Barcelona, Spain 4Department of Fisheries and Marine Biology, University of Bergen, HIB, 5020 Bergen, Norway *Email: pedrotti@obs-vlfr.fr ABSTRACT: The production of transparent exopolymer particles (TEP) in response to several environmental variables was studied in 2 mesocosm experiments. The first (Expt 1) examined a gradient of 4 nutrient levels; the second (Expt 2) examined different conditions of silicate availability and zooplankton presence. Tanks were separated in 2 series, one subjected to turbulence and the other not influenced by turbulence. In tanks with nutrient addition, TEP were rapidly formed, with net apparent production rates closely linked to chl a growth rates, suggesting that phytoplankton cells were actively exuding TEP precursors. High nutrient availability increased the absolute concentration of TEP; however, the relative quantity of TEP produced was found to be lower, as TEP concentration per unit of phytoplankton biomass was inversely related to the initial nitrate dose. In Expt 1, an increase in TEP volume (3 to 48 µm equivalent spherical diameter) with nutrient dose was observed; in Expt 2, both silicate addition and turbulence enhanced TEP production and favored aggregation to larger TEP (>48 µm). The presence of zooplankton lowered TEP concentration and changed the size distribution of TEP, presumably by grazing on TEP or phytoplankton. For lower nutrient concentrations, the ratio of particulate organic carbon (POC) to particulate organic nitrogen (PON) followed the Redfield ratio. At higher nutrient conditions, when nutrients were exhausted during the post-bloom, a decoupling of carbon and nitrogen dynamics occurred and was correlated to TEP formation, with a large flow of carbon channeled toward the TEP pool in turbulent tanks. TEP accounted for an increase in POC concentration of 50% in high-nutrient and turbulent conditions. The study of TEP dynamics is crucial to understanding the biogeochemical response of the aquatic system to forcing variables such as nutrient availability and turbulence intensity. KEY WORDS: Transparent exopolymer particles · TEP production · Phytoplankton · Particulate organic carbon · POC · Turbulence · Nutrients · Mesocosms Full text in pdf format PreviousNextCite this article as: Pedrotti ML, Peters F, Beauvais S, Vidal M, Egge J, Jacobsen A, Marrasé C (2010) Effects of nutrients and turbulence on the production of transparent exopolymer particles: a mesocosm study. Mar Ecol Prog Ser 419:57-69. https://doi.org/10.3354/meps08840 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 419. Online publication date: November 30, 2010 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2010 Inter-Research." @default.
- W2171794732 created "2016-06-24" @default.
- W2171794732 creator A5018791686 @default.
- W2171794732 creator A5026899271 @default.
- W2171794732 creator A5051311529 @default.
- W2171794732 creator A5065282358 @default.
- W2171794732 creator A5073485450 @default.
- W2171794732 creator A5081281718 @default.
- W2171794732 creator A5084149330 @default.
- W2171794732 date "2010-11-30" @default.
- W2171794732 modified "2023-10-12" @default.
- W2171794732 title "Effects of nutrients and turbulence on the production of transparent exopolymer particles: a mesocosm study" @default.
- W2171794732 cites W1491619236 @default.
- W2171794732 cites W1539227095 @default.
- W2171794732 cites W1559054152 @default.
- W2171794732 cites W1572543759 @default.
- W2171794732 cites W178629792 @default.
- W2171794732 cites W1900191615 @default.
- W2171794732 cites W1926389685 @default.
- W2171794732 cites W1964819552 @default.
- W2171794732 cites W1968561500 @default.
- W2171794732 cites W1973324265 @default.
- W2171794732 cites W1974183955 @default.
- W2171794732 cites W1977384597 @default.
- W2171794732 cites W1977731002 @default.
- W2171794732 cites W1984204819 @default.
- W2171794732 cites W1992125572 @default.
- W2171794732 cites W1992958336 @default.
- W2171794732 cites W1995940588 @default.
- W2171794732 cites W1996600193 @default.
- W2171794732 cites W2002462993 @default.
- W2171794732 cites W2003615897 @default.
- W2171794732 cites W2031667720 @default.
- W2171794732 cites W2045381798 @default.
- W2171794732 cites W2047198064 @default.
- W2171794732 cites W2052759556 @default.
- W2171794732 cites W2053928314 @default.
- W2171794732 cites W2063240006 @default.
- W2171794732 cites W2068821249 @default.
- W2171794732 cites W2070583786 @default.
- W2171794732 cites W2073470504 @default.
- W2171794732 cites W2076372549 @default.
- W2171794732 cites W2085809527 @default.
- W2171794732 cites W2086662715 @default.
- W2171794732 cites W2088848726 @default.
- W2171794732 cites W2089198067 @default.
- W2171794732 cites W2092213273 @default.
- W2171794732 cites W2096675242 @default.
- W2171794732 cites W2100575191 @default.
- W2171794732 cites W2100757962 @default.
- W2171794732 cites W2101952906 @default.
- W2171794732 cites W2111573245 @default.
- W2171794732 cites W2111689448 @default.
- W2171794732 cites W2120913103 @default.
- W2171794732 cites W2120922714 @default.
- W2171794732 cites W2132411129 @default.
- W2171794732 cites W2132918635 @default.
- W2171794732 cites W2133617587 @default.
- W2171794732 cites W2141531128 @default.
- W2171794732 cites W2148942563 @default.
- W2171794732 cites W2150706222 @default.
- W2171794732 cites W2152294686 @default.
- W2171794732 cites W2152361529 @default.
- W2171794732 cites W2156393791 @default.
- W2171794732 cites W2160575983 @default.
- W2171794732 cites W2165729112 @default.
- W2171794732 cites W2166998104 @default.
- W2171794732 cites W2170499576 @default.
- W2171794732 cites W2171801051 @default.
- W2171794732 cites W2508765924 @default.
- W2171794732 cites W5835657 @default.
- W2171794732 doi "https://doi.org/10.3354/meps08840" @default.
- W2171794732 hasPublicationYear "2010" @default.
- W2171794732 type Work @default.
- W2171794732 sameAs 2171794732 @default.
- W2171794732 citedByCount "23" @default.
- W2171794732 countsByYear W21717947322015 @default.
- W2171794732 countsByYear W21717947322016 @default.
- W2171794732 countsByYear W21717947322017 @default.
- W2171794732 countsByYear W21717947322018 @default.
- W2171794732 countsByYear W21717947322019 @default.
- W2171794732 countsByYear W21717947322020 @default.
- W2171794732 countsByYear W21717947322021 @default.
- W2171794732 countsByYear W21717947322022 @default.
- W2171794732 countsByYear W21717947322023 @default.
- W2171794732 crossrefType "journal-article" @default.
- W2171794732 hasAuthorship W2171794732A5018791686 @default.
- W2171794732 hasAuthorship W2171794732A5026899271 @default.
- W2171794732 hasAuthorship W2171794732A5051311529 @default.
- W2171794732 hasAuthorship W2171794732A5065282358 @default.
- W2171794732 hasAuthorship W2171794732A5073485450 @default.
- W2171794732 hasAuthorship W2171794732A5081281718 @default.
- W2171794732 hasAuthorship W2171794732A5084149330 @default.
- W2171794732 hasBestOaLocation W21717947321 @default.
- W2171794732 hasConcept C107872376 @default.
- W2171794732 hasConcept C111368507 @default.
- W2171794732 hasConcept C127313418 @default.
- W2171794732 hasConcept C142796444 @default.