Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171878998> ?p ?o ?g. }
- W2171878998 endingPage "41" @default.
- W2171878998 startingPage "30" @default.
- W2171878998 abstract "Very short-term load forecasting predicts the loads 1 h into the future in 5-min steps in a moving window manner based on real-time data collected. Effective forecasting is important in area generation control and resource dispatch. It is however difficult in view of the noisy data collection process and complicated load features. This paper presents a method of wavelet neural networks with data pre-filtering. The key idea is to use a spike filtering technique to detect spikes in load data and correct them. Wavelet decomposition is then used to decompose the filtered loads into multiple components at different frequencies, separate neural networks are applied to capture the features of individual components, and results of neural networks are then combined to form the final forecasts. To perform moving forecasts, 12 dedicated wavelet neural networks are used based on test results. Numerical testing demonstrates the effects of data pre-filtering and the accuracy of wavelet neural networks based on a data set from ISO New England." @default.
- W2171878998 created "2016-06-24" @default.
- W2171878998 creator A5012923646 @default.
- W2171878998 creator A5027102638 @default.
- W2171878998 creator A5063544553 @default.
- W2171878998 creator A5070935042 @default.
- W2171878998 creator A5084227795 @default.
- W2171878998 date "2013-02-01" @default.
- W2171878998 modified "2023-10-06" @default.
- W2171878998 title "Very Short-Term Load Forecasting: Wavelet Neural Networks With Data Pre-Filtering" @default.
- W2171878998 cites W1964984358 @default.
- W2171878998 cites W1974595793 @default.
- W2171878998 cites W1985815014 @default.
- W2171878998 cites W2016210396 @default.
- W2171878998 cites W2020416411 @default.
- W2171878998 cites W2026241078 @default.
- W2171878998 cites W2062981820 @default.
- W2171878998 cites W2071258353 @default.
- W2171878998 cites W2094887027 @default.
- W2171878998 cites W2100090926 @default.
- W2171878998 cites W2106961563 @default.
- W2171878998 cites W2108604808 @default.
- W2171878998 cites W2110242776 @default.
- W2171878998 cites W2117101597 @default.
- W2171878998 cites W2117812871 @default.
- W2171878998 cites W2121900750 @default.
- W2171878998 cites W2123044680 @default.
- W2171878998 cites W2131605309 @default.
- W2171878998 cites W2135160607 @default.
- W2171878998 cites W2135368631 @default.
- W2171878998 cites W2141767566 @default.
- W2171878998 cites W2144419913 @default.
- W2171878998 cites W2156604062 @default.
- W2171878998 cites W2159848772 @default.
- W2171878998 cites W3149934406 @default.
- W2171878998 doi "https://doi.org/10.1109/tpwrs.2012.2197639" @default.
- W2171878998 hasPublicationYear "2013" @default.
- W2171878998 type Work @default.
- W2171878998 sameAs 2171878998 @default.
- W2171878998 citedByCount "184" @default.
- W2171878998 countsByYear W21718789982013 @default.
- W2171878998 countsByYear W21718789982014 @default.
- W2171878998 countsByYear W21718789982015 @default.
- W2171878998 countsByYear W21718789982016 @default.
- W2171878998 countsByYear W21718789982017 @default.
- W2171878998 countsByYear W21718789982018 @default.
- W2171878998 countsByYear W21718789982019 @default.
- W2171878998 countsByYear W21718789982020 @default.
- W2171878998 countsByYear W21718789982021 @default.
- W2171878998 countsByYear W21718789982022 @default.
- W2171878998 countsByYear W21718789982023 @default.
- W2171878998 crossrefType "journal-article" @default.
- W2171878998 hasAuthorship W2171878998A5012923646 @default.
- W2171878998 hasAuthorship W2171878998A5027102638 @default.
- W2171878998 hasAuthorship W2171878998A5063544553 @default.
- W2171878998 hasAuthorship W2171878998A5070935042 @default.
- W2171878998 hasAuthorship W2171878998A5084227795 @default.
- W2171878998 hasConcept C111919701 @default.
- W2171878998 hasConcept C121332964 @default.
- W2171878998 hasConcept C124101348 @default.
- W2171878998 hasConcept C153180895 @default.
- W2171878998 hasConcept C154945302 @default.
- W2171878998 hasConcept C177264268 @default.
- W2171878998 hasConcept C196216189 @default.
- W2171878998 hasConcept C199360897 @default.
- W2171878998 hasConcept C41008148 @default.
- W2171878998 hasConcept C47432892 @default.
- W2171878998 hasConcept C50644808 @default.
- W2171878998 hasConcept C58489278 @default.
- W2171878998 hasConcept C61797465 @default.
- W2171878998 hasConcept C62520636 @default.
- W2171878998 hasConcept C98045186 @default.
- W2171878998 hasConceptScore W2171878998C111919701 @default.
- W2171878998 hasConceptScore W2171878998C121332964 @default.
- W2171878998 hasConceptScore W2171878998C124101348 @default.
- W2171878998 hasConceptScore W2171878998C153180895 @default.
- W2171878998 hasConceptScore W2171878998C154945302 @default.
- W2171878998 hasConceptScore W2171878998C177264268 @default.
- W2171878998 hasConceptScore W2171878998C196216189 @default.
- W2171878998 hasConceptScore W2171878998C199360897 @default.
- W2171878998 hasConceptScore W2171878998C41008148 @default.
- W2171878998 hasConceptScore W2171878998C47432892 @default.
- W2171878998 hasConceptScore W2171878998C50644808 @default.
- W2171878998 hasConceptScore W2171878998C58489278 @default.
- W2171878998 hasConceptScore W2171878998C61797465 @default.
- W2171878998 hasConceptScore W2171878998C62520636 @default.
- W2171878998 hasConceptScore W2171878998C98045186 @default.
- W2171878998 hasIssue "1" @default.
- W2171878998 hasLocation W21718789981 @default.
- W2171878998 hasOpenAccess W2171878998 @default.
- W2171878998 hasPrimaryLocation W21718789981 @default.
- W2171878998 hasRelatedWork W1577789985 @default.
- W2171878998 hasRelatedWork W1982375519 @default.
- W2171878998 hasRelatedWork W1994967090 @default.
- W2171878998 hasRelatedWork W2037328875 @default.
- W2171878998 hasRelatedWork W2112061901 @default.
- W2171878998 hasRelatedWork W23086544 @default.
- W2171878998 hasRelatedWork W2541950815 @default.