Matches in SemOpenAlex for { <https://semopenalex.org/work/W2171900703> ?p ?o ?g. }
- W2171900703 endingPage "316" @default.
- W2171900703 startingPage "279" @default.
- W2171900703 abstract "Abstract In two previous papers (Wu, J. Fluid Mech. , vol. 453, 2002, p. 289, and Wu & Hogg, J. Fluid Mech. , vol. 550, 2006, p. 307), a formal asymptotic procedure was developed to calculate the sound radiated by unsteady boundary-layer flows that are described by the triple-deck theory. That approach requires lengthy calculations, and so is now improved to construct a simpler composite theory, which retains the capacity of systematically identifying and approximating the relevant sources, but also naturally includes the effect of mean-flow refraction and more importantly the back action of the emitted sound on the source itself. The combined effect of refraction and back action is represented by an ‘impedance coefficient’, and the present analysis yields an analytical expression for this parameter, which was usually introduced on a semi-empirical basis. The expression indicates that for Mach number $M= O(1)$ , the mean-flow refraction and back action of the sound have a leading-order effect on the acoustic field within the shallow angles to the streamwise directions. A parametric study suggests that the back effect of sound is actually appreciable in a sizeable portion of the acoustic field for $Mgt 0. 5$ , becomes more pronounced, and eventually influences the entire acoustic field in the transonic limit. In the supersonic regime, the acoustic field is characterized by distinctive Mach-wave beams, which exert a leading-order influence on the source. The analysis also indicates that acoustic radiation in the subsonic and supersonic regimes is fundamentally different. In the subsonic regime, the sound is produced by small-wavenumber components of the hydrodynamic motion, and can be characterized by acoustic multipoles, whereas in the supersonic regime, broadband finite-wavenumber components of the hydrodynamic motion contribute and the concept of a multipolar source becomes untenable. The global acoustic feedback loop is investigated using a model consisting of two well-separated roughness elements, in which the sound wave emitted due to the scattering of a Tollmien–Schlichting (T–S) wave by the downstream roughness propagates upstream and impinges on the upstream roughness to regenerate the T–S wave. Numerical calculations suggest that at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to global instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number or the distance between the roughness elements is varied gradually." @default.
- W2171900703 created "2016-06-24" @default.
- W2171900703 creator A5012095106 @default.
- W2171900703 date "2011-11-15" @default.
- W2171900703 modified "2023-10-16" @default.
- W2171900703 title "On generation of sound in wall-bounded shear flows: back action of sound and global acoustic coupling" @default.
- W2171900703 cites W1534267622 @default.
- W2171900703 cites W1561240170 @default.
- W2171900703 cites W1637376309 @default.
- W2171900703 cites W1963828657 @default.
- W2171900703 cites W1964233428 @default.
- W2171900703 cites W1965928106 @default.
- W2171900703 cites W1966099108 @default.
- W2171900703 cites W1966359670 @default.
- W2171900703 cites W1971776477 @default.
- W2171900703 cites W1977042411 @default.
- W2171900703 cites W1978177847 @default.
- W2171900703 cites W1988808219 @default.
- W2171900703 cites W1996743902 @default.
- W2171900703 cites W2005378463 @default.
- W2171900703 cites W2007007743 @default.
- W2171900703 cites W2007371131 @default.
- W2171900703 cites W2009685099 @default.
- W2171900703 cites W2038873673 @default.
- W2171900703 cites W2050885830 @default.
- W2171900703 cites W2051187093 @default.
- W2171900703 cites W2054197107 @default.
- W2171900703 cites W2063796335 @default.
- W2171900703 cites W2068169473 @default.
- W2171900703 cites W2084332605 @default.
- W2171900703 cites W2107362277 @default.
- W2171900703 cites W2109195722 @default.
- W2171900703 cites W2117770205 @default.
- W2171900703 cites W2118722494 @default.
- W2171900703 cites W2119881161 @default.
- W2171900703 cites W2127245645 @default.
- W2171900703 cites W2131361036 @default.
- W2171900703 cites W2131926641 @default.
- W2171900703 cites W2149464507 @default.
- W2171900703 cites W2149863992 @default.
- W2171900703 cites W2151778576 @default.
- W2171900703 cites W2152781207 @default.
- W2171900703 cites W2160925966 @default.
- W2171900703 cites W2161120670 @default.
- W2171900703 cites W2168899250 @default.
- W2171900703 cites W2169565444 @default.
- W2171900703 cites W2170248744 @default.
- W2171900703 cites W4245210790 @default.
- W2171900703 cites W3150861430 @default.
- W2171900703 doi "https://doi.org/10.1017/jfm.2011.416" @default.
- W2171900703 hasPublicationYear "2011" @default.
- W2171900703 type Work @default.
- W2171900703 sameAs 2171900703 @default.
- W2171900703 citedByCount "17" @default.
- W2171900703 countsByYear W21719007032013 @default.
- W2171900703 countsByYear W21719007032014 @default.
- W2171900703 countsByYear W21719007032015 @default.
- W2171900703 countsByYear W21719007032016 @default.
- W2171900703 countsByYear W21719007032017 @default.
- W2171900703 countsByYear W21719007032019 @default.
- W2171900703 countsByYear W21719007032020 @default.
- W2171900703 countsByYear W21719007032021 @default.
- W2171900703 countsByYear W21719007032022 @default.
- W2171900703 crossrefType "journal-article" @default.
- W2171900703 hasAuthorship W2171900703A5012095106 @default.
- W2171900703 hasConcept C103838597 @default.
- W2171900703 hasConcept C107119854 @default.
- W2171900703 hasConcept C111603439 @default.
- W2171900703 hasConcept C120665830 @default.
- W2171900703 hasConcept C121332964 @default.
- W2171900703 hasConcept C13393347 @default.
- W2171900703 hasConcept C153385146 @default.
- W2171900703 hasConcept C165231844 @default.
- W2171900703 hasConcept C205318122 @default.
- W2171900703 hasConcept C205991772 @default.
- W2171900703 hasConcept C24890656 @default.
- W2171900703 hasConcept C2777223244 @default.
- W2171900703 hasConcept C57879066 @default.
- W2171900703 hasConceptScore W2171900703C103838597 @default.
- W2171900703 hasConceptScore W2171900703C107119854 @default.
- W2171900703 hasConceptScore W2171900703C111603439 @default.
- W2171900703 hasConceptScore W2171900703C120665830 @default.
- W2171900703 hasConceptScore W2171900703C121332964 @default.
- W2171900703 hasConceptScore W2171900703C13393347 @default.
- W2171900703 hasConceptScore W2171900703C153385146 @default.
- W2171900703 hasConceptScore W2171900703C165231844 @default.
- W2171900703 hasConceptScore W2171900703C205318122 @default.
- W2171900703 hasConceptScore W2171900703C205991772 @default.
- W2171900703 hasConceptScore W2171900703C24890656 @default.
- W2171900703 hasConceptScore W2171900703C2777223244 @default.
- W2171900703 hasConceptScore W2171900703C57879066 @default.
- W2171900703 hasLocation W21719007031 @default.
- W2171900703 hasOpenAccess W2171900703 @default.
- W2171900703 hasPrimaryLocation W21719007031 @default.
- W2171900703 hasRelatedWork W1630430245 @default.
- W2171900703 hasRelatedWork W1971115917 @default.
- W2171900703 hasRelatedWork W1972200338 @default.
- W2171900703 hasRelatedWork W1992645339 @default.