Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172064003> ?p ?o ?g. }
- W2172064003 endingPage "38" @default.
- W2172064003 startingPage "24" @default.
- W2172064003 abstract "Time series prediction techniques have been used in many real-world applications such as financial market prediction, electric utility load forecasting , weather and environmental state prediction, and reliability forecasting. The underlying system models and time series data generating processes are generally complex for these applications and the models for these systems are usually not known a priori. Accurate and unbiased estimation of the time series data produced by these systems cannot always be achieved using well known linear techniques, and thus the estimation process requires more advanced time series prediction algorithms. This paper provides a survey of time series prediction applications using a novel machine learning approach: support vector machines (SVM). The underlying motivation for using SVMs is the ability of this methodology to accurately forecast time series data when the underlying system processes are typically nonlinear, non-stationary and not defined a-priori. SVMs have also been proven to outperform other non-linear techniques including neural-network based non-linear prediction techniques such as multi-layer perceptrons.The ultimate goal is to provide the reader with insight into the applications using SVM for time series prediction, to give a brief tutorial on SVMs for time series prediction, to outline some of the advantages and challenges in using SVMs for time series prediction, and to provide a source for the reader to locate books, technical journals, and other online SVM research resources." @default.
- W2172064003 created "2016-06-24" @default.
- W2172064003 creator A5041771244 @default.
- W2172064003 creator A5059073882 @default.
- W2172064003 date "2009-05-01" @default.
- W2172064003 modified "2023-10-11" @default.
- W2172064003 title "Time Series Prediction Using Support Vector Machines: A Survey" @default.
- W2172064003 cites W1483483523 @default.
- W2172064003 cites W1486089539 @default.
- W2172064003 cites W1488883378 @default.
- W2172064003 cites W1507413863 @default.
- W2172064003 cites W1512101952 @default.
- W2172064003 cites W1517337078 @default.
- W2172064003 cites W1530572332 @default.
- W2172064003 cites W1535554321 @default.
- W2172064003 cites W1538456752 @default.
- W2172064003 cites W1562940673 @default.
- W2172064003 cites W1563088657 @default.
- W2172064003 cites W1596717185 @default.
- W2172064003 cites W1607183577 @default.
- W2172064003 cites W1797539709 @default.
- W2172064003 cites W1820874639 @default.
- W2172064003 cites W1851859510 @default.
- W2172064003 cites W1869155793 @default.
- W2172064003 cites W1885899143 @default.
- W2172064003 cites W1944057139 @default.
- W2172064003 cites W1957185543 @default.
- W2172064003 cites W1964357740 @default.
- W2172064003 cites W1971957960 @default.
- W2172064003 cites W1979237584 @default.
- W2172064003 cites W1981312402 @default.
- W2172064003 cites W1986604238 @default.
- W2172064003 cites W1988518729 @default.
- W2172064003 cites W1990027312 @default.
- W2172064003 cites W2000548672 @default.
- W2172064003 cites W2008725920 @default.
- W2172064003 cites W2012079387 @default.
- W2172064003 cites W2017654692 @default.
- W2172064003 cites W2019330606 @default.
- W2172064003 cites W2023932725 @default.
- W2172064003 cites W2032170121 @default.
- W2172064003 cites W2032852212 @default.
- W2172064003 cites W2033486907 @default.
- W2172064003 cites W2041387425 @default.
- W2172064003 cites W2042039446 @default.
- W2172064003 cites W2056401416 @default.
- W2172064003 cites W2056489048 @default.
- W2172064003 cites W2069929199 @default.
- W2172064003 cites W2083995498 @default.
- W2172064003 cites W2085831731 @default.
- W2172064003 cites W2085900457 @default.
- W2172064003 cites W2103868191 @default.
- W2172064003 cites W2105934661 @default.
- W2172064003 cites W2111440106 @default.
- W2172064003 cites W2121205008 @default.
- W2172064003 cites W2124690033 @default.
- W2172064003 cites W2125048244 @default.
- W2172064003 cites W2125736403 @default.
- W2172064003 cites W2140143008 @default.
- W2172064003 cites W2149298154 @default.
- W2172064003 cites W2149681371 @default.
- W2172064003 cites W2149938625 @default.
- W2172064003 cites W2150898978 @default.
- W2172064003 cites W2156909104 @default.
- W2172064003 cites W2166467897 @default.
- W2172064003 cites W2167981995 @default.
- W2172064003 cites W2168138569 @default.
- W2172064003 cites W2168456184 @default.
- W2172064003 cites W2172073485 @default.
- W2172064003 cites W3123622325 @default.
- W2172064003 cites W4301501800 @default.
- W2172064003 cites W2074534917 @default.
- W2172064003 doi "https://doi.org/10.1109/mci.2009.932254" @default.
- W2172064003 hasPublicationYear "2009" @default.
- W2172064003 type Work @default.
- W2172064003 sameAs 2172064003 @default.
- W2172064003 citedByCount "808" @default.
- W2172064003 countsByYear W21720640032012 @default.
- W2172064003 countsByYear W21720640032013 @default.
- W2172064003 countsByYear W21720640032014 @default.
- W2172064003 countsByYear W21720640032015 @default.
- W2172064003 countsByYear W21720640032016 @default.
- W2172064003 countsByYear W21720640032017 @default.
- W2172064003 countsByYear W21720640032018 @default.
- W2172064003 countsByYear W21720640032019 @default.
- W2172064003 countsByYear W21720640032020 @default.
- W2172064003 countsByYear W21720640032021 @default.
- W2172064003 countsByYear W21720640032022 @default.
- W2172064003 countsByYear W21720640032023 @default.
- W2172064003 crossrefType "journal-article" @default.
- W2172064003 hasAuthorship W2172064003A5041771244 @default.
- W2172064003 hasAuthorship W2172064003A5059073882 @default.
- W2172064003 hasConcept C111472728 @default.
- W2172064003 hasConcept C111919701 @default.
- W2172064003 hasConcept C119857082 @default.
- W2172064003 hasConcept C12267149 @default.
- W2172064003 hasConcept C124101348 @default.
- W2172064003 hasConcept C138885662 @default.