Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172073485> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2172073485 endingPage "1518" @default.
- W2172073485 startingPage "1506" @default.
- W2172073485 abstract "A novel type of learning machine called support vector machine (SVM) has been receiving increasing interest in areas ranging from its original application in pattern recognition to other applications such as regression estimation due to its remarkable generalization performance. This paper deals with the application of SVM in financial time series forecasting. The feasibility of applying SVM in financial forecasting is first examined by comparing it with the multilayer back-propagation (BP) neural network and the regularized radial basis function (RBF) neural network. The variability in performance of SVM with respect to the free parameters is investigated experimentally. Adaptive parameters are then proposed by incorporating the nonstationarity of financial time series into SVM. Five real futures contracts collated from the Chicago Mercantile Market are used as the data sets. The simulation shows that among the three methods, SVM outperforms the BP neural network in financial forecasting, and there are comparable generalization performance between SVM and the regularized RBF neural network. Furthermore, the free parameters of SVM have a great effect on the generalization performance. SVM with adaptive parameters can both achieve higher generalization performance and use fewer support vectors than the standard SVM in financial forecasting." @default.
- W2172073485 created "2016-06-24" @default.
- W2172073485 creator A5013728469 @default.
- W2172073485 creator A5056917996 @default.
- W2172073485 date "2003-11-01" @default.
- W2172073485 modified "2023-10-11" @default.
- W2172073485 title "Support vector machine with adaptive parameters in financial time series forecasting" @default.
- W2172073485 cites W1797539709 @default.
- W2172073485 cites W1983220355 @default.
- W2172073485 cites W1988518729 @default.
- W2172073485 cites W2024804972 @default.
- W2172073485 cites W2029803196 @default.
- W2172073485 cites W2031762450 @default.
- W2172073485 cites W2040519618 @default.
- W2172073485 cites W2051290946 @default.
- W2172073485 cites W2078309414 @default.
- W2172073485 cites W2089942891 @default.
- W2172073485 cites W2124690033 @default.
- W2172073485 cites W2141765048 @default.
- W2172073485 cites W2145344497 @default.
- W2172073485 cites W2156909104 @default.
- W2172073485 cites W2162240164 @default.
- W2172073485 cites W2171277043 @default.
- W2172073485 cites W2889626940 @default.
- W2172073485 doi "https://doi.org/10.1109/tnn.2003.820556" @default.
- W2172073485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18244595" @default.
- W2172073485 hasPublicationYear "2003" @default.
- W2172073485 type Work @default.
- W2172073485 sameAs 2172073485 @default.
- W2172073485 citedByCount "838" @default.
- W2172073485 countsByYear W21720734852012 @default.
- W2172073485 countsByYear W21720734852013 @default.
- W2172073485 countsByYear W21720734852014 @default.
- W2172073485 countsByYear W21720734852015 @default.
- W2172073485 countsByYear W21720734852016 @default.
- W2172073485 countsByYear W21720734852017 @default.
- W2172073485 countsByYear W21720734852018 @default.
- W2172073485 countsByYear W21720734852019 @default.
- W2172073485 countsByYear W21720734852020 @default.
- W2172073485 countsByYear W21720734852021 @default.
- W2172073485 countsByYear W21720734852022 @default.
- W2172073485 countsByYear W21720734852023 @default.
- W2172073485 crossrefType "journal-article" @default.
- W2172073485 hasAuthorship W2172073485A5013728469 @default.
- W2172073485 hasAuthorship W2172073485A5056917996 @default.
- W2172073485 hasConcept C119857082 @default.
- W2172073485 hasConcept C12267149 @default.
- W2172073485 hasConcept C124101348 @default.
- W2172073485 hasConcept C134306372 @default.
- W2172073485 hasConcept C151406439 @default.
- W2172073485 hasConcept C154945302 @default.
- W2172073485 hasConcept C155032097 @default.
- W2172073485 hasConcept C177148314 @default.
- W2172073485 hasConcept C33923547 @default.
- W2172073485 hasConcept C41008148 @default.
- W2172073485 hasConcept C50644808 @default.
- W2172073485 hasConcept C98856871 @default.
- W2172073485 hasConceptScore W2172073485C119857082 @default.
- W2172073485 hasConceptScore W2172073485C12267149 @default.
- W2172073485 hasConceptScore W2172073485C124101348 @default.
- W2172073485 hasConceptScore W2172073485C134306372 @default.
- W2172073485 hasConceptScore W2172073485C151406439 @default.
- W2172073485 hasConceptScore W2172073485C154945302 @default.
- W2172073485 hasConceptScore W2172073485C155032097 @default.
- W2172073485 hasConceptScore W2172073485C177148314 @default.
- W2172073485 hasConceptScore W2172073485C33923547 @default.
- W2172073485 hasConceptScore W2172073485C41008148 @default.
- W2172073485 hasConceptScore W2172073485C50644808 @default.
- W2172073485 hasConceptScore W2172073485C98856871 @default.
- W2172073485 hasIssue "6" @default.
- W2172073485 hasLocation W21720734851 @default.
- W2172073485 hasLocation W21720734852 @default.
- W2172073485 hasOpenAccess W2172073485 @default.
- W2172073485 hasPrimaryLocation W21720734851 @default.
- W2172073485 hasRelatedWork W1863534956 @default.
- W2172073485 hasRelatedWork W1868434454 @default.
- W2172073485 hasRelatedWork W1966421350 @default.
- W2172073485 hasRelatedWork W2088845016 @default.
- W2172073485 hasRelatedWork W2128396103 @default.
- W2172073485 hasRelatedWork W2766774900 @default.
- W2172073485 hasRelatedWork W4239286941 @default.
- W2172073485 hasRelatedWork W4366984740 @default.
- W2172073485 hasRelatedWork W4366985237 @default.
- W2172073485 hasRelatedWork W589102260 @default.
- W2172073485 hasVolume "14" @default.
- W2172073485 isParatext "false" @default.
- W2172073485 isRetracted "false" @default.
- W2172073485 magId "2172073485" @default.
- W2172073485 workType "article" @default.