Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172102893> ?p ?o ?g. }
- W2172102893 endingPage "1490" @default.
- W2172102893 startingPage "1481" @default.
- W2172102893 abstract "Abstract BACKGROUND This paper considers a real‐world optimization problem involving the identification of cost‐effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time‐consuming fitness evaluations. RESULTS An industrially‐relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data‐visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed‐loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost‐effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry." @default.
- W2172102893 created "2016-06-24" @default.
- W2172102893 creator A5002257046 @default.
- W2172102893 creator A5016775792 @default.
- W2172102893 creator A5053181919 @default.
- W2172102893 creator A5070768786 @default.
- W2172102893 date "2013-12-26" @default.
- W2172102893 modified "2023-10-09" @default.
- W2172102893 title "Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture" @default.
- W2172102893 cites W1601446905 @default.
- W2172102893 cites W1977247611 @default.
- W2172102893 cites W1978177075 @default.
- W2172102893 cites W1987920176 @default.
- W2172102893 cites W2008843696 @default.
- W2172102893 cites W2019529908 @default.
- W2172102893 cites W2024675956 @default.
- W2172102893 cites W2046032587 @default.
- W2172102893 cites W2057350714 @default.
- W2172102893 cites W2068014407 @default.
- W2172102893 cites W2074172477 @default.
- W2172102893 cites W2079336704 @default.
- W2172102893 cites W2080546956 @default.
- W2172102893 cites W2082618018 @default.
- W2172102893 cites W2109007223 @default.
- W2172102893 cites W2118007687 @default.
- W2172102893 cites W2122567999 @default.
- W2172102893 cites W2129231661 @default.
- W2172102893 cites W2134238361 @default.
- W2172102893 cites W2145942688 @default.
- W2172102893 cites W2160375571 @default.
- W2172102893 cites W2254236926 @default.
- W2172102893 cites W2801034590 @default.
- W2172102893 cites W2913235079 @default.
- W2172102893 cites W4241727697 @default.
- W2172102893 cites W1595153037 @default.
- W2172102893 doi "https://doi.org/10.1002/jctb.4267" @default.
- W2172102893 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4258073" @default.
- W2172102893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25506115" @default.
- W2172102893 hasPublicationYear "2013" @default.
- W2172102893 type Work @default.
- W2172102893 sameAs 2172102893 @default.
- W2172102893 citedByCount "19" @default.
- W2172102893 countsByYear W21721028932014 @default.
- W2172102893 countsByYear W21721028932015 @default.
- W2172102893 countsByYear W21721028932016 @default.
- W2172102893 countsByYear W21721028932017 @default.
- W2172102893 countsByYear W21721028932018 @default.
- W2172102893 countsByYear W21721028932019 @default.
- W2172102893 countsByYear W21721028932020 @default.
- W2172102893 countsByYear W21721028932022 @default.
- W2172102893 crossrefType "journal-article" @default.
- W2172102893 hasAuthorship W2172102893A5002257046 @default.
- W2172102893 hasAuthorship W2172102893A5016775792 @default.
- W2172102893 hasAuthorship W2172102893A5053181919 @default.
- W2172102893 hasAuthorship W2172102893A5070768786 @default.
- W2172102893 hasBestOaLocation W21721028931 @default.
- W2172102893 hasConcept C111919701 @default.
- W2172102893 hasConcept C11413529 @default.
- W2172102893 hasConcept C116834253 @default.
- W2172102893 hasConcept C119857082 @default.
- W2172102893 hasConcept C126255220 @default.
- W2172102893 hasConcept C127413603 @default.
- W2172102893 hasConcept C137836250 @default.
- W2172102893 hasConcept C159149176 @default.
- W2172102893 hasConcept C177264268 @default.
- W2172102893 hasConcept C178790620 @default.
- W2172102893 hasConcept C185592680 @default.
- W2172102893 hasConcept C199360897 @default.
- W2172102893 hasConcept C2777767291 @default.
- W2172102893 hasConcept C33923547 @default.
- W2172102893 hasConcept C41008148 @default.
- W2172102893 hasConcept C59822182 @default.
- W2172102893 hasConcept C68781425 @default.
- W2172102893 hasConcept C86803240 @default.
- W2172102893 hasConcept C98045186 @default.
- W2172102893 hasConceptScore W2172102893C111919701 @default.
- W2172102893 hasConceptScore W2172102893C11413529 @default.
- W2172102893 hasConceptScore W2172102893C116834253 @default.
- W2172102893 hasConceptScore W2172102893C119857082 @default.
- W2172102893 hasConceptScore W2172102893C126255220 @default.
- W2172102893 hasConceptScore W2172102893C127413603 @default.
- W2172102893 hasConceptScore W2172102893C137836250 @default.
- W2172102893 hasConceptScore W2172102893C159149176 @default.
- W2172102893 hasConceptScore W2172102893C177264268 @default.
- W2172102893 hasConceptScore W2172102893C178790620 @default.
- W2172102893 hasConceptScore W2172102893C185592680 @default.
- W2172102893 hasConceptScore W2172102893C199360897 @default.
- W2172102893 hasConceptScore W2172102893C2777767291 @default.
- W2172102893 hasConceptScore W2172102893C33923547 @default.
- W2172102893 hasConceptScore W2172102893C41008148 @default.
- W2172102893 hasConceptScore W2172102893C59822182 @default.
- W2172102893 hasConceptScore W2172102893C68781425 @default.
- W2172102893 hasConceptScore W2172102893C86803240 @default.
- W2172102893 hasConceptScore W2172102893C98045186 @default.
- W2172102893 hasFunder F4320334627 @default.
- W2172102893 hasIssue "10" @default.
- W2172102893 hasLocation W21721028931 @default.
- W2172102893 hasLocation W21721028932 @default.