Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172116798> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2172116798 endingPage "331" @default.
- W2172116798 startingPage "323" @default.
- W2172116798 abstract "Pseudo-Boolean functions are generalizations of Boolean functions. We present a new method for learning pseudo-Boolean functions from limited training data. The objective of learning is to obtain a function f which is a good approximation of the target function f*. We define suitable criteria for the “goodness” of an approximating function. One criterion is to choose a function f that minimizes the “expected distance” with respect to a distance function d (over pairs of pseudo-Boolean functions) and the uniform distribution over all feasible pseudo-Boolean functions. We define two alternative “distance measures” over pairs of pseudo-Boolean functions, and show that they are are actually equivalent with respect to the criterion of minimal expected distance. We outline efficient algorithms for learning pseudo-Boolean functions according to these criteria. Other reasonable distance measures and “goodness” criteria are also discussed." @default.
- W2172116798 created "2016-06-24" @default.
- W2172116798 creator A5025877100 @default.
- W2172116798 creator A5042560788 @default.
- W2172116798 creator A5079580976 @default.
- W2172116798 creator A5089232057 @default.
- W2172116798 date "2005-01-01" @default.
- W2172116798 modified "2023-10-18" @default.
- W2172116798 title "Efficient Learning of Pseudo-Boolean Functions from Limited Training Data" @default.
- W2172116798 cites W1583555936 @default.
- W2172116798 cites W2041990574 @default.
- W2172116798 cites W2063342497 @default.
- W2172116798 cites W2074078071 @default.
- W2172116798 cites W2113633207 @default.
- W2172116798 cites W2156909104 @default.
- W2172116798 cites W4293860921 @default.
- W2172116798 doi "https://doi.org/10.1007/11425274_34" @default.
- W2172116798 hasPublicationYear "2005" @default.
- W2172116798 type Work @default.
- W2172116798 sameAs 2172116798 @default.
- W2172116798 citedByCount "4" @default.
- W2172116798 countsByYear W21721167982012 @default.
- W2172116798 crossrefType "book-chapter" @default.
- W2172116798 hasAuthorship W2172116798A5025877100 @default.
- W2172116798 hasAuthorship W2172116798A5042560788 @default.
- W2172116798 hasAuthorship W2172116798A5079580976 @default.
- W2172116798 hasAuthorship W2172116798A5089232057 @default.
- W2172116798 hasConcept C11413529 @default.
- W2172116798 hasConcept C121332964 @default.
- W2172116798 hasConcept C153294291 @default.
- W2172116798 hasConcept C154945302 @default.
- W2172116798 hasConcept C187455244 @default.
- W2172116798 hasConcept C2777211547 @default.
- W2172116798 hasConcept C41008148 @default.
- W2172116798 hasConceptScore W2172116798C11413529 @default.
- W2172116798 hasConceptScore W2172116798C121332964 @default.
- W2172116798 hasConceptScore W2172116798C153294291 @default.
- W2172116798 hasConceptScore W2172116798C154945302 @default.
- W2172116798 hasConceptScore W2172116798C187455244 @default.
- W2172116798 hasConceptScore W2172116798C2777211547 @default.
- W2172116798 hasConceptScore W2172116798C41008148 @default.
- W2172116798 hasLocation W21721167981 @default.
- W2172116798 hasOpenAccess W2172116798 @default.
- W2172116798 hasPrimaryLocation W21721167981 @default.
- W2172116798 hasRelatedWork W2093578348 @default.
- W2172116798 hasRelatedWork W2358668433 @default.
- W2172116798 hasRelatedWork W2390279801 @default.
- W2172116798 hasRelatedWork W2575160563 @default.
- W2172116798 hasRelatedWork W258997015 @default.
- W2172116798 hasRelatedWork W2748952813 @default.
- W2172116798 hasRelatedWork W2810751659 @default.
- W2172116798 hasRelatedWork W2899084033 @default.
- W2172116798 hasRelatedWork W3107474891 @default.
- W2172116798 hasRelatedWork W2233261550 @default.
- W2172116798 isParatext "false" @default.
- W2172116798 isRetracted "false" @default.
- W2172116798 magId "2172116798" @default.
- W2172116798 workType "book-chapter" @default.