Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172295140> ?p ?o ?g. }
- W2172295140 endingPage "336" @default.
- W2172295140 startingPage "332" @default.
- W2172295140 abstract "<h3>Abstract</h3> <h3>Background</h3> Accurate prediction of epitopes presented by human leukocyte antigen (HLA) is crucial for personalized cancer immunotherapies targeting T cell epitopes. Mass spectrometry (MS) profiling of eluted HLA ligands, which provides unbiased, high-throughput measurements of HLA associated peptides <i>in vivo</i>, could be used to faithfully model the presentation of epitopes on the cell surface. In addition, gene expression profiles measured by RNA-seq data in a specific cell/tissue type can significantly improve the performance of epitope presentation prediction. However, although large amount of high-quality MS data of HLA-bound peptides is being generated in recent years, few provide matching RNA-seq data, which makes incorporating gene expression into epitope prediction difficult. <h3>Methods</h3> We collected publicly available HLA peptidome and matching RNA-seq data of 34 cell lines derived from various sources. We built position score specific matrixes (PSSMs) for 21 HLA-I alleles based on these MS data, then used logistic regression (LR) to model the relationship among PSSM score, gene expression and peptide length to predict whether a peptide could be presented in each of the cell line. Comparing the feature weights and biases across different HLA-I alleles and cell lines, we observed a universal relationship among these three variables. To confirm this, we built a single LR model by pooling PSSM scores, gene expression levels and peptide length features across different HLA alleles and cell lines, and compared its performance with the allele and cell line specific LR models. Indeed, the predictive powers had no significant differences across cell lines and HLA alleles, and both substantially outperformed predictions based on PSSM scores alone. Based on such a finding, we further built a universal LR model, termed Epitope Presentation Integrated prediCtion (EPIC), based on more than 180,000 unique HLA ligands collected from public sources and ∼3,000 HLA ligands generated by ourselves, to predict epitope presentation for 66 common HLA-I alleles. <h3>Results</h3> When evaluating EPIC on large, independent HLA eluted ligand datasets, it performed substantially better than other popular methods, including MixMHCpred (v2.0), NetMHCpan (v4.0), and MHCflurry (v1.2.2), with an average 0.1% positive predictive value (PPV) of 51.59%, compared to 36.98%, 36.41%, 24.67% and 23.39% achieved by MixMHCpred, NetMHCpan-4.0 (EL), NetMHCpan-4.0 (BA) and MHCflurry, respectively. It is also comparable to EDGE, a recent deep learning-based model that is not yet publicly available, on predicting epitope presentation and selecting immunogenic cancer neoantigens. However, the simplicity and flexibility of EPIC makes it much easier to be applied in diverse situations, especially when users would like to take advantage of emerging eluted ligand data for new HLA alleles. We demonstrated this by generating MS data for the HCC4006 cell line and adding the support of HLA-A*33:03, which has no previous MS or binding affinity data available, to EPIC. EPIC is publicly available at <https://github.com/BGI2016/EPIC>. <h3>Conclusions</h3> we have developed an easy to use, publicly available epitope prediction tool, EPIC, that incorporates information from both MS and RNA-seq data, and demonstrated its superior performance over existing public methods." @default.
- W2172295140 created "2016-06-24" @default.
- W2172295140 creator A5023316200 @default.
- W2172295140 creator A5032231962 @default.
- W2172295140 creator A5045874363 @default.
- W2172295140 creator A5062190152 @default.
- W2172295140 creator A5076080344 @default.
- W2172295140 creator A5077681153 @default.
- W2172295140 date "2012-05-22" @default.
- W2172295140 modified "2023-10-14" @default.
- W2172295140 title "Prasugrel is effective and safe for neurointerventional procedures" @default.
- W2172295140 cites W104398217 @default.
- W2172295140 cites W141287021 @default.
- W2172295140 cites W1537239012 @default.
- W2172295140 cites W1585181312 @default.
- W2172295140 cites W1964235612 @default.
- W2172295140 cites W1985059672 @default.
- W2172295140 cites W1985835171 @default.
- W2172295140 cites W1992350295 @default.
- W2172295140 cites W1997164729 @default.
- W2172295140 cites W1999120274 @default.
- W2172295140 cites W2036359752 @default.
- W2172295140 cites W2040375848 @default.
- W2172295140 cites W2045800911 @default.
- W2172295140 cites W2046619003 @default.
- W2172295140 cites W2076472818 @default.
- W2172295140 cites W2088308053 @default.
- W2172295140 cites W2102393690 @default.
- W2172295140 cites W2105005467 @default.
- W2172295140 cites W2105730036 @default.
- W2172295140 cites W2128228188 @default.
- W2172295140 cites W2134771297 @default.
- W2172295140 cites W2135575592 @default.
- W2172295140 cites W2139769402 @default.
- W2172295140 cites W2143777566 @default.
- W2172295140 cites W2145126811 @default.
- W2172295140 cites W2149465085 @default.
- W2172295140 cites W2152823642 @default.
- W2172295140 cites W2154940301 @default.
- W2172295140 cites W2165637474 @default.
- W2172295140 cites W2170056615 @default.
- W2172295140 cites W2326451964 @default.
- W2172295140 cites W2616555459 @default.
- W2172295140 cites W2968751749 @default.
- W2172295140 cites W4251889856 @default.
- W2172295140 doi "https://doi.org/10.1136/neurintsurg-2012-010302" @default.
- W2172295140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22619468" @default.
- W2172295140 hasPublicationYear "2012" @default.
- W2172295140 type Work @default.
- W2172295140 sameAs 2172295140 @default.
- W2172295140 citedByCount "39" @default.
- W2172295140 countsByYear W21722951402012 @default.
- W2172295140 countsByYear W21722951402013 @default.
- W2172295140 countsByYear W21722951402014 @default.
- W2172295140 countsByYear W21722951402015 @default.
- W2172295140 countsByYear W21722951402016 @default.
- W2172295140 countsByYear W21722951402017 @default.
- W2172295140 countsByYear W21722951402018 @default.
- W2172295140 countsByYear W21722951402019 @default.
- W2172295140 countsByYear W21722951402020 @default.
- W2172295140 countsByYear W21722951402021 @default.
- W2172295140 countsByYear W21722951402022 @default.
- W2172295140 countsByYear W21722951402023 @default.
- W2172295140 crossrefType "journal-article" @default.
- W2172295140 hasAuthorship W2172295140A5023316200 @default.
- W2172295140 hasAuthorship W2172295140A5032231962 @default.
- W2172295140 hasAuthorship W2172295140A5045874363 @default.
- W2172295140 hasAuthorship W2172295140A5062190152 @default.
- W2172295140 hasAuthorship W2172295140A5076080344 @default.
- W2172295140 hasAuthorship W2172295140A5077681153 @default.
- W2172295140 hasConcept C104317684 @default.
- W2172295140 hasConcept C147483822 @default.
- W2172295140 hasConcept C188280979 @default.
- W2172295140 hasConcept C195616568 @default.
- W2172295140 hasConcept C203014093 @default.
- W2172295140 hasConcept C54355233 @default.
- W2172295140 hasConcept C70721500 @default.
- W2172295140 hasConcept C71924100 @default.
- W2172295140 hasConcept C86803240 @default.
- W2172295140 hasConceptScore W2172295140C104317684 @default.
- W2172295140 hasConceptScore W2172295140C147483822 @default.
- W2172295140 hasConceptScore W2172295140C188280979 @default.
- W2172295140 hasConceptScore W2172295140C195616568 @default.
- W2172295140 hasConceptScore W2172295140C203014093 @default.
- W2172295140 hasConceptScore W2172295140C54355233 @default.
- W2172295140 hasConceptScore W2172295140C70721500 @default.
- W2172295140 hasConceptScore W2172295140C71924100 @default.
- W2172295140 hasConceptScore W2172295140C86803240 @default.
- W2172295140 hasIssue "4" @default.
- W2172295140 hasLocation W21722951401 @default.
- W2172295140 hasLocation W21722951402 @default.
- W2172295140 hasOpenAccess W2172295140 @default.
- W2172295140 hasPrimaryLocation W21722951401 @default.
- W2172295140 hasRelatedWork W1979044599 @default.
- W2172295140 hasRelatedWork W1990804418 @default.
- W2172295140 hasRelatedWork W1993764875 @default.
- W2172295140 hasRelatedWork W2009867644 @default.
- W2172295140 hasRelatedWork W2021824670 @default.